首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
A [Fe-S-Fe] subunit with a single sulfide bridging two low-coordinate iron ions is the supposed active site of the iron-molybdenum co-factor (FeMoco) of nitrogenase. Here we report a dinuclear monosulfido bridged diiron(II) complex with a similar complex geometry that can be oxidized stepwise to diiron(II/III) and diiron(III/III) complexes while retaining the [Fe-S-Fe] core. The series of complexes has been characterized crystallographically, and electronic structures have been studied using, inter alia, 57Fe Mössbauer spectroscopy and SQUID magnetometry. Further, cleavage of the [Fe-S-Fe] unit by CS2 is presented.  相似文献   

2.
The nitrogenase MoFe protein contains two different FeS centers, the P-cluster and the iron–molybdenum cofactor (FeMo-co). The former is a [Fe8S7] center responsible for conveying electrons to the latter, a [MoFe7S9C-(R)-homocitrate] species, where N2 reduction takes place. NifB is arguably the key enzyme in FeMo-co assembly as it catalyzes the fusion of two [Fe4S4] clusters and the insertion of carbide and sulfide ions to build NifB-co, a [Fe8S9C] precursor to FeMo-co. Recently, two crystal structures of NifB proteins were reported, one containing two out of three [Fe4S4] clusters coordinated by the protein which is likely to correspond to an early stage of the reaction mechanism. The other one was fully complemented with the three [Fe4S4] clusters (RS, K1 and K2), but was obtained at lower resolution and a satisfactory model was not obtained. Here we report improved processing of this crystallographic data. At odds with what was previously reported, this structure contains a unique [Fe8S8] cluster, likely to be a NifB-co precursor resulting from the fusion of K1- and K2-clusters. Strikingly, this new [Fe8S8] cluster has both a structure and coordination sphere geometry reminiscent of the fully reduced P-cluster (PN-state) with an additional μ2-bridging sulfide ion pointing toward the RS cluster. Comparison of available NifB structures further unveils the plasticity of this protein and suggests how ligand reorganization would accommodate cluster loading and fusion in the time-course of NifB-co synthesis.

The K-cluster of NifB as a key intermediate in the synthesis of the nitrogenase active site supports [Fe4S4] cluster fusion occurs before carbide and sulfide insertion and displays ligand spatial arrangement reminiscent to that of the P-cluster.  相似文献   

3.
Nitrogen fixation at iron centres is a fundamental catalytic step for N2 utilisation, relevant to biological (nitrogenase) and industrial (Haber-Bosch) processes. This step is coupled with important electronic structure changes which are currently poorly understood. We show here for the first time that terminal dinitrogen dissociation from iron complexes that coordinate N2 in a terminal and bridging fashion leaves the Fe-N2-Fe unit intact but significantly enhances the degree of N2 activation (Δν≈180 cm−1, Raman spectroscopy) through charge redistribution. The transformation proceeds with local spin state change at the iron centre (S= →S=3/2). Further dissociation of the bridging N2 can be induced under thermolytic conditions, triggering a disproportionation reaction, from which the tetrahedral (PNN)2Fe could be isolated. This work shows that dinitrogen activation can be induced in the absence of external chemical stimuli such as reducing agents or Lewis acids.  相似文献   

4.
Bimolecular nucleophilic substitution (SN2) reactions at carbon center are well known to proceed with the stereospecific Walden-inversion mechanism. Reaction dynamics simulations on a newly developed high-level ab initio analytical potential energy surface for the F + NH2Cl nitrogen-centered SN2 and proton-transfer reactions reveal a hydrogen-bond-formation-induced multiple-inversion mechanism undermining the stereospecificity of the N-centered SN2 channel. Unlike the analogous F + CH3Cl SN2 reaction, F + NH2Cl → Cl + NH2F is indirect, producing a significant amount of NH2F with retention, as well as inverted NH2Cl during the timescale within the unperturbed NH2Cl molecule gets inverted with only low probability, showing the important role of facilitated inversions via an FH…NHCl-like transition state. Proton transfer leading to HF + NHCl is more direct and becomes the dominant product channel at higher collision energies.

Multiple-inversion, the analogue of the double-inversion pathway recently revealed for SN2@C, is the key mechanism in SN2 at N center undermining stereospecificity.  相似文献   

5.
While strategies involving a 2e transfer pathway have dictated glycosylation development, the direct glycosylation of readily accessible glycosyl donors as radical precursors is particularly appealing because of high radical anomeric selectivity and atom- and step-economy. However, the development of the radical process has been challenging owing to notorious competing reduction, elimination and/or SN side reactions of commonly used, labile glycosyl donors. Here we introduce an organophotocatalytic strategy through which glycosyl bromides can be efficiently converted into corresponding anomeric radicals by photoredox mediated HAT catalysis without a transition metal or a directing group and achieve highly anomeric selectivity. The power of this platform has been demonstrated by the mild reaction conditions enabling the synthesis of challenging α-1,2-cis-thioglycosides, the tolerance of various functional groups and the broad substrate scope for both common pentoses and hexoses. Furthermore, this general approach is compatible with both sp2 and sp3 sulfur electrophiles and late-stage glycodiversification for a total of 50 substrates probed.

Organophotoredox mediated HAT catalysis is developed for achieving high anomerically selective thioglycosylation of glycosyl bromides.  相似文献   

6.
Molecular mechanisms underlying the repair of nitrosylated [Fe–S] clusters by the microbial protein YtfE remain poorly understood. The X‐ray crystal structure of YtfE, in combination with EPR, magnetic circular dichroism (MCD), UV, and 17O‐labeling electron spin echo envelope modulation measurements, show that each iron of the oxo‐bridged FeII–FeIII diiron core is coordinatively unsaturated with each iron bound to two bridging carboxylates and two terminal histidines in addition to an oxo‐bridge. Structural analysis reveals that there are two solvent‐accessible tunnels, both of which converge to the diiron center and are critical for capturing substrates. The reactivity of the reduced‐form FeII–FeII YtfE toward nitric oxide demonstrates that the prerequisite for N2O production requires the two iron sites to be nitrosylated simultaneously. Specifically, the nitrosylation of the two iron sites prior to their reductive coupling to produce N2O is cooperative. This result suggests that, in addition to any repair of iron centers (RIC) activity, YtfE acts as an NO‐trapping scavenger to promote the NO to N2O transformation under low NO flux, which precedes nitrosative stress.  相似文献   

7.
The synthesis, structure, and properties of bischloro, μ‐oxo, and a family of μ‐hydroxo complexes (with BF4?, SbF6?, and PF6? counteranions) of diethylpyrrole‐bridged diiron(III) bisporphyrins are reported. Spectroscopic characterization has revealed that the iron centers of the bischloro and μ‐oxo complexes are in the high‐spin state (S=5/2). However, the two iron centers in the diiron(III) μ‐hydroxo complexes are equivalent with high spin (S=5/2) in the solid state and an intermediate‐spin state (S=3/2) in solution. The molecules have been compared with previously known diiron(III) μ‐hydroxo complexes of ethane‐bridged bisporphyrin, in which two different spin states of iron were stabilized under the influence of counteranions. The dimanganese(III) analogues were also synthesized and spectroscopically characterized. A comparison of the X‐ray structural parameters between diethylpyrrole and ethane‐bridged μ‐hydroxo bisporphyrins suggest an increased separation, and hence, less interactions between the two heme units of the former. As a result, unlike the ethane‐bridged μ‐hydroxo complex, both iron centers become equivalent in the diethylpyrrole‐bridged complex and their spin state remains unresponsive to the change in counteranion. The iron(III) centers of the diethylpyrrole‐bridged diiron(III) μ‐oxo bisporphyrin undergo very strong antiferromagnetic interactions (J=?137.7 cm?1), although the coupling constant is reduced to only a weak value in the μ‐hydroxo complexes (J=?42.2, ?44.1, and ?42.4 cm?1 for the BF4, SbF6, and PF6 complexes, respectively).  相似文献   

8.
To compare the catalytic effect of the active center of nitrogenase (iron-molybdenum cofactor (FeMoco)) under nonenzymatic conditions with the behavior of FeMoco incorporated in a protein, the kinetics of C2H2 reduction with Zn and Eu amalgams was examined in the presence of the cofactor extracted from the MoFe protein of nitrogenase (the specific activity of the extracted FeMoco after its integration into the cofactordeficient MoFe protein ofKp 5058 was 200 ± 20 mol of C2H4 (mol of Mo)-1 min-1. It was found that under exposure to reducing agents of different strength—Zn amalgam (I) (−0.84 V with respect to a normal hydrogen electrode (NHE)) and Eu amalgam (II) (−1.4 V with respect to NHE)—different reduction states of FeMoco were produced. They differed in the number and properties of substrateand inhibitor-coordinating active sites. For I, the rate of ethylene formation was described by a hyperbolic function of substrate concentration (K M = 0.045 atm). Carbon monoxide reversibly inhibited the reduction of acetylene(K i - 0.05). For II, a sigmoid relationship between the rate of accumulation of C2H4 or C2H6 and substrate concentration was found. This relationship was explained by the occurrence of three interrelated sites of acetylene coordination and reduction with the apparent constantK M = 0.08 atm in the FeMoco cluster reduced by europium amalgam. In this case, the specific activity was 40–60 mol of C2H4 (mol of Mo)−1 min−1. For the system with Eu (Hg), the CO inhibition constants were 0.004 and 0.009 atm for the formation of ethylene and ethane, respectively. The behavior of FeMoco as a catalyst for acetylene reduction and the inhibition of this reaction by carbon monoxide in various reducing protein and nonprotein media were compared. This comparison demonstrated that typical features of the catalytic behavior of FeMoco depend primarily on its composition and structure and only secondarily on the type of the reducing agent and on the reaction medium.  相似文献   

9.
An unprecedented base-promoted multi-component one-pot dearomatization of N-alkyl activated azaarenes was developed, which enabled the synthesis of complex and diverse bridged cyclic polycycles with multiple stereocenters in a highly regio- and diastereoselective manner. Besides, we realized the step-controlled dearomative bi- and trifunctionalization of quinolinium salts. These transformations not only achieved the maximization of the reaction sites of pyridinium, quinolinium and isoquinolinium salts to enhance structural complexity and diversity, but also opened up a new reaction mode of these N-activated azaarenes. A unique feature of this strategy is the use of easily accessible and bench-stable N-alkyl activated azaarenes to provide maximum reactive sites for dearomative cascade cyclizations. In addition, the salient characteristics including high synthetic efficiency, short reaction time, mild conditions and simple operation made this strategy particularly attractive.

An unprecedented base-promoted multi-component one-pot dearomatization of N-alkyl activated azaarenes was developed to construct complex and diverse bridged cyclic polycycles with multiple stereocenters in a highly regio- and diastereoselective manner.  相似文献   

10.
The inhibiting effects of CO and N2 on the ability of the nitrogenase iron–molybdenum cofactor (FeMoco) to catalyze acetylene reduction outside the protein were studied to obtain data on the mechanism of substrate reduction at the active center of the enzyme nitrogenase. It was found that CO and N2 reacted with FeMoco that was separated from the enzyme and reduced by zinc amalgam (E = –0.84 V relative to a normal hydrogen electrode (NHE)) (I) or europium amalgam (E = –1.4 V relative to NHE) (II). In system I, CO reversibly inhibited the reaction of acetylene reduction to ethylene with K i = 0.05 atm CO. In system II, CO inhibited the formation of the two products of C2H2 reduction in different manners: the mixed-type or competitive inhibition was found for ethylene formation with K i = 0.003 atm CO and the incomplete competitive inhibition was found for ethane formation with K i = 0.006 atm CO. The fraction of C2H6 in the reaction products was greater than 50% at a CO pressure of 0.05 atm because of the stronger inhibiting effect of CO on the formation of C2H4. The change in the product specificity of acetylene-reduction centers under influence of CO was explained by some stabilization of the intermediate complex [FeMoco · C2H2] upon the simultaneous coordination of CO to the catalytic cluster. Because of this, the fraction value of ethane as a multielectron reduction product increased. The experimental results suggest that several active sites at the FeMoco cluster reduced outside the protein can be simultaneously occupied by substrates and (or) inhibitors. The inhibition of both ethane and ethylene formation by molecular nitrogen in system II is competitive with K i = 0.5 atm N2 for either product. That is, N2 and C2H2 as ligands compete for the same coordination site at the reduced FeMoco cluster. The inhibiting effects of CO and N2 on the catalytic behaviors of both isolated FeMoco and that in the enzyme were compared.  相似文献   

11.
The inhibiting effects of CO and N2 on the ability of the nitrogenase iron–molybdenum cofactor (FeMoco) to catalyze acetylene reduction outside the protein were studied to obtain data on the mechanism of substrate reduction at the active center of the enzyme nitrogenase. It was found that CO and N2 reacted with FeMoco that was separated from the enzyme and reduced by zinc amalgam (E = –0.84 V with reference to a normal hydrogen electrode (NHE)) (I) or europium amalgam (E = –1.4 V with reference to NHE) (II). In system I, CO reversibly inhibited the reaction of acetylene reduction to ethylene with K i = 0.05 atm CO. In system II, CO inhibited the formation of the two products of C2H2 reduction in different manners: the mixed-type or competitive inhibition of ethylene formation with K i = 0.003 atm CO and the incomplete competitive inhibition of ethane formation with K i = 0.006 atm CO. The fraction of C2H6 in the reaction products was higher than 50% at a CO pressure of 0.05 atm because of the stronger inhibiting effect of CO on the formation of C2H4. A change in the product specificity of acetylene-reduction centers under exposure to CO was explained by some stabilization of the intermediate complex [FeMoco · C2H2] upon the simultaneous coordination of CO to the catalytic cluster. Because of this, the fraction of the many-electron reduction product (ethane) increased. The experimental results suggest that several active sites in the FeMoco cluster reduced outside the protein can be simultaneously occupied by substrates and (or) inhibitors. The inhibition of both ethane and ethylene formation by molecular nitrogen in system II is competitive with K i = 0.5 atm N2 for either product. That is, N2 and C2H2 as ligands compete for the same coordination site in the reduced FeMoco cluster. The inhibiting effects of CO and N2 on the catalytic behaviors of FeMoco outside the protein and as an enzyme constituent were compared.  相似文献   

12.
Cyanuric triazide reacts with several transition metal precursors, extruding one equivalent of N2 and reducing the putative diazidotriazeneylnitrene species by two electrons, which rearranges to N-(1′H-[1,5′-bitetrazol]-5-yl)methanediiminate (biTzI2−) dianionic ligand, which ligates the metal and dimerizes, and is isolated from pyridine as [M(biTzI)]2Py6 (M = Mn, Fe, Zn, Cu, Ni). Reagent scope, product analysis, and quantum chemical calculations were combined to elucidate the mechanism of formation as a two-electron reduction preceding ligand rearrangement.

Cyanuric triazide reacts with transition metal precursors, extruding N2 and reducing the ligand by two electrons, which breaks an aromatic ring and rearranges to a bitetrazolylmethanediiminate (biTzI2−) ligand, forming two new aromatic rings.  相似文献   

13.
Nitrous oxide reductase (N2OR) is the only known enzyme reducing environmentally critical nitrous oxide (N2O) to dinitrogen (N2) as the final step of bacterial denitrification. The assembly process of its unique catalytic [4Cu:2S] cluster CuZ remains scarcely understood. Here we report on a mutagenesis study of all seven histidine ligands coordinating this copper center, followed by spectroscopic and structural characterization and based on an established, functional expression system for Pseudomonas stutzeri N2OR in Escherichia coli. While no copper ion was found in the CuZ binding site of variants H129A, H130A, H178A, H326A, H433A and H494A, the H382A variant carried a catalytically inactive [3Cu:2S] center, in which one sulfur ligand, SZ2, had relocated to form a weak hydrogen bond to the sidechain of the nearby lysine residue K454. This link provides sufficient stability to avoid the loss of the sulfide anion. The UV-vis spectra of this cluster are strikingly similar to those of the active enzyme, implying that the flexibility of SZ2 may have been observed before, but not recognized. The sulfide shift changes the metal coordination in CuZ and is thus of high mechanistic interest.

Variants of all seven histidine ligands of the [4Cu:2S] active site of nitrous oxide reductase mostly result in loss of the metal site. However, a H382A variant retains a [3Cu:2S] cluster that hints towards a structural flexibility also present in the intact site.  相似文献   

14.
Iron-catalyzed highly regio- and enantioselective organic transformations with generality and broad substrate scope have profound applications in modern synthetic chemistry; an example is herein described based on cis-FeII complexes having metal- and ligand-centered chirality. The cis-β FeII(N4) complex [FeII(L)(OTf)2] (L = N,N′-bis(2,3-dihydro-1H-cyclopenta-[b]quinoline-5-yl)-N,N′-dimethylcyclohexane-1,2-diamine) is an effective chiral catalyst for highly regio- and enantioselective alkylation of N-heteroaromatics with α,β-unsaturated 2-acyl imidazoles, including asymmetric N1, C2, C3 alkylations of a broad range of indoles (34 examples) and alkylation of pyrroles and anilines (14 examples), all with high product yields (up to 98%), high enantioselectivity (up to >99% ee) and high regioselectivity. DFT calculations revealed that the “chiral-at-metal” cis-β configuration of the iron complex and a secondary π–π interaction are responsible for the high enantioselectivity.

A cis-β FeII complex having metal- and ligand-centered chirality catalyzes highly regio- and enantioselective alkylation of indoles (at the N1, C2, or C3 position), pyrroles and anilines with α,β-unsaturated 2-acyl imidazoles (48 examples, up to 99% ee).  相似文献   

15.
The synthesis of a 1,2,3,4-tetramethylcyclopentadienyl (Cp4) substituted four-membered N-heterocyclic silylene [{PhC(NtBu)2}Si(C5Me4H)] is reported first. Then, selected reactions with transition metal and a calcium precursor are shown. The proton of the Cp4-unit is labile. This results in two different reaction pathways: (1) deprotonation and (2) rearrangement reactions. Deprotonation was achieved by the reaction of [{PhC(NtBu)2}Si(C5Me4H)] with suitable zinc precursors. Rearrangement to [{PhC(NtBu)2}(C5Me4)SiH], featuring a formally tetravalent silicon R2C Created by potrace 1.16, written by Peter Selinger 2001-2019 Si(R′)–H unit, was observed when the proton of the Cp4 ring was shifted from the Cp4-ring to the silylene in the presence of a Lewis acid. This allows for the coordination of the Cp4-ring to a calcium compound. Furthermore, upon reaction with transition metal dimers [MCl(cod)]2 (M = Rh, Ir; cod = 1,5-cyclooctadiene) the proton stays at the Cp4-ring and the silylene reacts as a sigma donor, which breaks the dimeric structure of the precursors.

A cyclopentadienyl functionalized silylene or its derivatives can be coordinated in all three forms: silylene (A), anion (B), and sila fulvene (C).  相似文献   

16.
A catalytic reaction using syngas (CO/H2) as feedstock for the selective β-methylation of alcohols was developed whereby carbon monoxide acts as a C1 source and hydrogen gas as a reducing agent. The overall transformation occurs through an intricate network of metal-catalyzed and base-mediated reactions. The molecular complex [Mn(CO)2Br[HN(C2H4PiPr2)2]] 1 comprising earth-abundant manganese acts as the metal component in the catalytic system enabling the generation of formaldehyde from syngas in a synthetically useful reaction. This new syngas conversion opens pathways to install methyl branches at sp3 carbon centers utilizing renewable feedstocks and energy for the synthesis of biologically active compounds, fine chemicals, and advanced biofuels.

A broadly applicable catalytic process for the selective β-methylation of alcohols is presented using syngas (CO/H2) directly as a C1 building block and the shown manganese complex in the presence of a base as the catalytic system.  相似文献   

17.
Starting from their six-coordinate iron(II) precursor complexes [L8RFe(MeCN)]2+, a series of iron(III) complexes of the known macrocyclic tetracarbene ligand L8H and its new octamethylated derivative L8Me, both providing four imidazol-2-yliden donors, were synthesized. Several five- and six-coordinate iron(III) complexes with different axial ligands (Cl, OTf, MeCN) were structurally characterized by X-ray diffraction and analyzed in detail with respect to their spin state variations, using a bouquet of spectroscopic methods (NMR, UV/Vis, EPR, and 57Fe Mößbauer). Depending on the axial ligands, either low-spin (S=1/2) or intermediate-spin (S=3/2) states were observed, whereas high-spin (S=5/2) states were inaccessible because of the extremely strong in-plane σ-donor character of the macrocyclic tetracarbene ligands. These findings are reminiscent of the spin state patterns of topologically related ferric porphyrin complexes. The ring conformations and dynamics of the macrocyclic tetracarbene ligands in their iron(II), iron(III) and μ-oxo diiron(III) complexes were also studied.  相似文献   

18.
Nitrous oxide (N2O) contributes significantly to ozone layer depletion and is a potent greenhouse agent, motivating interest in the chemical details of biological N2O fixation by nitrous oxide reductase (N2OR) during bacterial denitrification. In this study, we report a combined experimental/computational study of a synthetic [4Cu:1S] cluster supported by N-donor ligands that can be considered the closest structural and functional mimic of the CuZ catalytic site in N2OR reported to date. Quantitative N2 measurements during synthetic N2O reduction were used to determine reaction stoichiometry, which in turn was used as the basis for density functional theory (DFT) modeling of hypothetical reaction intermediates. The mechanism for N2O reduction emerging from this computational modeling involves cooperative activation of N2O across a Cu/S cluster edge. Direct interaction of the μ4-S ligand with the N2O substrate during coordination and N–O bond cleavage represents an unconventional mechanistic paradigm to be considered for the chemistry of CuZ and related metal–sulfur clusters. Consistent with hypothetical participation of the μ4-S unit in two-electron reduction of N2O, Cu K-edge and S K-edge X-ray absorption spectroscopy (XAS) reveal a high degree of participation by the μ4-S in redox changes, with approximately 21% S 3p contribution to the redox-active molecular orbital in the highly covalent [4Cu:1S] core, compared to approximately 14% Cu 3d contribution per copper. The XAS data included in this study represent the first spectroscopic interrogation of multiple redox levels of a [4Cu:1S] cluster and show high fidelity to the biological CuZ site.

Experimental data and computational modeling indicates an active role for the bridging sulfide ligand in a synthetic CuZ model.  相似文献   

19.
The iron(ii) salt [Fe(bpp)2](isonicNO)2·HisonicNO·5H2O (1) (bpp = 2,6-bis(pyrazol-3-yl)pyridine; isonicNO = isonicotinate N-oxide anion) undergoes a partial spin crossover (SCO) with symmetry breaking at T1 = 167 K to a mixed-spin phase (50% high-spin (HS), 50% low-spin (LS)) that is metastable below T2 = 116 K. Annealing the compound at lower temperatures results in a 100% LS phase that differs from the initial HS phase in the formation of a hydrogen bond (HB) between two water molecules (O4W and O5W) of crystallisation. Neutron crystallography experiments have also evidenced a proton displacement inside a short strong hydrogen bond (SSHB) between two isonicNO anions. Both phenomena can also be detected in the mixed-spin phase. 1 undergoes a light-induced excited-state spin trapping (LIESST) of the 100% HS phase, with breaking of the O4W⋯O5W HB and the onset of proton static disorder in the SSHB, indicating the presence of a light-induced activation energy barrier for proton motion. This excited state shows a stepped relaxation at T1(LIESST) = 68 K and T2(LIESST) = 76 K. Photocrystallography measurements after the first relaxation step reveal a single Fe site with an intermediate geometry, resulting from the random distribution of the HS and LS sites throughout the lattice.

A proton migration across a short strong hydrogen bond can be triggered by spin crossover of a remote Fe2+ cation, with the onset of a photoinduced activation energy barrier for proton motion at low temperatures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号