首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A linear thermoviscoelastic model for homogeneous, aging materials with memory is established. A system of integro-differential equations is obtained by using two motions (a one-dimensional motion and a shearing motion) for this model. Applying the group analysis method to the system of integro-differential equations, the admitted Lie group is determined. Using this admitted Lie group, invariant and partially invariant solutions are found. The present paper gives a first example of application of partially invariant solutions to integro-differential equations.  相似文献   

2.
Journal of Applied Mechanics and Technical Physics - Complete group analysis of the system of one-dimensional unsteady equations of the dynamics of a vibrationally excited gas is performed in the...  相似文献   

3.
基于周期结构的动力特性和群理论,建立了一种高效求解含缺陷一维周期结构动力响应的数值方法。在求解结构动力响应时,高效求解结构对应的线性代数方程组最为关键。采用凝聚技术,可减小结构对应线性代数方程组的规模。基于周期结构动力系统中线性代数方程组的特性,通过一个小规模含缺陷结构和一维周期结构的响应分析,可得到含缺陷一维周期结构的动力响应。同理,一维周期结构的动力响应可通过一系列小规模结构的响应分析得到,且小规模结构的动力响应可基于群理论高效求解。数值算例表明,本文算法有较高的求解效率。  相似文献   

4.
5.
The shallow water equations on a rotatable attracting sphere represent a system of hyperbolic equations on a compact manifold. These equations are derived in a spherical coordinate system from the integral laws of mass and total momentum conservation with account for the Coriolis and centrifugal forces. An analysis of the stability of discontinuous solutions with discontinuous waves and contact discontinuities is made using the closing law of total energy conservation, which represents a convex extension of the basic conservation-law system. The classes of stationary, one-dimensional (latitude-dependent only) exact solutions with contact discontinuities and discontinuous waves are constructed. Within the framework of the one-dimensional equations the test problem of wave flows resulting from the simultaneous break of two dams confining a fluid at rest in the vicinities of the poles is numerically modeled.  相似文献   

6.
7.
To predict the propagation of pressure and flow pulses in arterial system and the variation of vascular input impedance, a branched and tapered tube model is studied through one-dimensional transient flow analysis. Coupling the continuity and momentum equations yields a group of quasilinear hyperbolic partial differential equations which can be solved numerically by using the method of characteristics. Several boundary conditions of the arterial system are also simplified suitably. The propagation of the pulses of the arterial system and the vascular input impedance is calculated on computer by using the dimensions and the physiological data of the arterial system. The results point out that the pressure and flow pulses of the arterial system and the vascular input impedance produced by this theoretical model is consistent quite well with the experimental results published.  相似文献   

8.
Group analysis provides a regular procedure for mathematical modeling by classifying differential equations with respect to arbitrary elements. This article presents the group classification of one-dimensional equations of fluids, where the internal energy is a function of the density and the gradient of the density. The equivalence Lie group and the admitted Lie group are provided. The group classification separates all models into 21 different classes according to the admitted Lie group. Invariant solutions of one particular model are obtained.   相似文献   

9.
In [1] the problem of optimal profiling of the supersonic portion of a plane or axisymmetric nozzle for nonequilibrium flow is reduced to a boundary-value problem for a hyperbolic system of equations which includes the flow equations and the equations for the Lagrange multipliers. In view of the complexity of the solution of that system, the present paper presents an analogous study based on the one-dimensional formulation. The solution is illustrated by examples. It is noted that a similar solution undertaken in [2] is in error.  相似文献   

10.
A new technique is proposed for solving the three-dimensional antisymmetric elastic problem for a thick-walled shell of finite length. The boundary-value problem is reduced to a system of one-dimensional singular integral equations. Characteristic stresses are calculated  相似文献   

11.
The group properties of one-dimensional nonstationary equations of an electric field in homogeneous isotropic media with nonlinear conductivity are considered. The nonlinear Ohm's laws for which these equations have the broadest symmetry properties are determined. Ordinary differential equations determining invariants solutions are obtained; the order of the equations is lowered or they are integrated to the end.Translated from Zhurnal Prikladnoi Mekhanika i Tekhnicheskaya Fizika, No. 3, pp. 28–36, May–June, 1972.  相似文献   

12.
13.
Dionne & Golubitsky [10] consider the classification of planforms bifurcating (simultaneously) in scalar partial differential equations that are equivariant with respect to the Euclidean group in the plane. In particular, those planforms corresponding to isotropy subgroups with one-dimensional fixed-point space are classified.Many important Euclidean-equivariant systems of partial differential equations essentially reduce to a scalar partial differential equation, but this is not always true for general systems. We extend the classification of [10] obtaining precisely three planforms that can arise for general systems and do not exist for scalar partial differential equations. In particular, there is a class of one-dimensional pseudoscalar partial differential equations for which the new planforms bifurcate in place of three of the standard planforms from scalar partial differential equations. For example, the usual rolls solutions are replaced by a nonstandard planform called anti-rolls. Scalar and pseudoscalar partial differential equations are distinguished by the representation of the Euclidean group.  相似文献   

14.
A novel procedure for solving three-dimensional problems for elastic layer weakened by through-thickness tunnel cracks has been developed and is presented in this paper. This procedure reduces the given boundary value problem to an infinite system of one-dimensional singular integral equations and is based on a system of homogeneous solutions for a layer. Integral representations of single- and double-layer potentials are used for metaharmonic and harmonic functions entering in the singular integral equations. These representations provide a continuous extendibility of the stress vector while allowing a jump in the displacement vector in the transition through the cut.Expanding the potential and biharmonic solutions in the Fourier series over the thickness coordinate yields the integral representations of the displacement vector and stress tensor. The problem of reducing a denumerable set of the integral equations of the given boundary value problem to one-to-one correspondence with the set of unknown densities appearing in the Fourier’s coefficient representations has been settled efficiently. Numerical investigations show a rapid convergence of the proposed reduction procedure as applied to the solution of the infinite system of one-dimensional integral equations. Numerical examples illustrate the proposed method and demonstrate its advantages.  相似文献   

15.
A mathematical model of motion of solid particles with selective permeability and a mixture of moving gases is developed with the use of averaging principles of mechanics of multiphase media. The derived system of quasi-linear partial differential equations is studied for a particular one-dimensional isothermal case.  相似文献   

16.
An approach is proposed to solve three-dimensional stress problems for noncircular hollow cylinders. The end conditions are such that the problem can be reduced to a two-dimensional problem. This problem is reduced to a one-dimensional problem by introducing additional functions into the resolvable system of equations. These functions are determined using discrete Fourier series. The one-dimensional problem is solved by a stable numerical method. As an example, the stress state of cylinders with an elliptic cross section is analyzed depending on their thickness and degree of ellipticity.  相似文献   

17.
We consider an approach to modeling the properties of the one-dimensional Cosserat continuum [1] by using the mechanical modeling method proposed by Il’yushin in [2] and applied in [3]. In this method, elements (blocks, cells) of special form are used to develop a discrete model of the structure so that the average properties of the model reproduced the properties of the continuum under study. The rigged rod model, which is an elastic structure in the form of a thin rod with massive inclusions (pulleys) fixed by elastic hinges on its elastic line and connected by elastic belt transmissions, is taken to be the original discrete model of the Cosserat continuum. The complete system of equations describing the mechanical properties and the dynamical equilibrium of the rigged rod in arbitrary plane motions is derived. These equations are averaged in the case of a sufficiently smooth variation in the parameters of motion along the rod (the long-wave approximation). It was found that the average equations exactly coincide with the equations for the one-dimensional Cosserat medium [1] and, in some specific cases, with the classical equations of motion of an elastic rod [4–6]. We study the plane motions of the one-dimensional continuum model thus constructed. The equations characterizing the continuum properties and motions are linearized by using several assumptions that the kinematic parameters are small. We solve the problem of natural vibrations with homogeneous boundary conditions and establish that each value of the parameter distinguishing the natural vibration modes is associated with exactly two distinct vibration mode shapes (in the same mode), each of which has its own frequency value.  相似文献   

18.
A system of approximate, one-dimensional partial differential equations with one spatial coordinate and time as independent variables is derived for axisymmetric motions of a piezoelectric ceramic rod of circular cross section. The equations take into account the couplings among extensional, radial and axial-shear modes. The dispersion curves for the three waves in an infinite rod are compared with analogous solutions of the three-dimensional equations. The equations obtained are useful in the modeling of ceramic rod piezoelectric transducers that are not very long and thin.  相似文献   

19.
The plane elastic problem for a semi-strip with a transverse crack is investigated. The initial problem is reduced to a one-dimensional continuous problem by use of an integral transformation method with a generalized scheme. The one-dimensional problem is first formulated as a vector boundary problem, and then reduced to a system of three singular integral equations(SIEs). The system is solved by use of an orthogonal polynomial method and a special generalized method. The contribution of this work is the consideration of kernel fixed singularities in solving the system. The crack length and its location relative to the semi-strip's lateral sides are investigated to simplify the problem's statement. This simplification reduces the initial problem to a system of two SIEs.  相似文献   

20.
We study the initial-boundary value problem for a system of quasilinear equations of one-dimensional nonlinear thermoviscoelasticity with rapidly oscillating nonsmooth coefficients and initial data. We rigorously justify the passage to the corresponding limit initial-boundary value problem for a system of two-scale homogenized integro-differential equations, including the existence theorem for the limit problem. The results are global with respect to the time interval and the data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号