首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用高温固相法合成了一种新型荧光粉La6-x Sr4(SiO4)6F2∶xCe3+,并通过X射线粉末衍射(XRD)、荧光光谱、荧光寿命等测试手段,对其进行了性能测试及表征.通过分析该荧光粉的荧光光谱,初步研究了其发光性能.结果表明:产物晶体属于六方晶系,磷灰石结构;所得样品在紫外线照射后发蓝光,发射峰位于413 nm,Ce3+的掺杂浓度为10mol;时发光强度最强.  相似文献   

2.
采用水热法制备了Pr3+激活的MMoO4∶Pr3+(M=Sr,Ba,Ca)系列荧光粉,通过X射线衍射(XRD)、扫描电镜(SEM)及荧光光谱(PL)对该系列荧光粉的物相、形貌及发光性能进行了表征.结果表明:Pr3+的掺入没有改变荧光粉的主晶相,在450nm蓝光激发下,样品产生了红光发射,其中对应于Pr3+的特征跃迁3P0→3 F2位于647 nm的Ba9.98Pr0.02MoO4发射峰最强.MMoO4∶Pr3+ (M =Sr,Ba,Ca)红色荧光粉可以被蓝光LED有效激发产生红光,是一种优异的YAG∶ Ce3+黄色荧光粉的红光补偿粉.  相似文献   

3.
利用高温固相法,合成出Eu2+、Ce3+、Mn2+共掺的Ca8Mg(SiO4)4Cl2系列绿色荧光粉。通过XRD表征了这些荧光粉的结构,通过分子荧光光谱仪研究了它们的室温发光性能。首先调查了Eu2+掺杂的Ca8Mg(SiO4)4Cl2绿色荧光粉发光性能,随后引入Ce3+、Mn2+提高了Ca8Mg(SiO4)4Cl2∶Eu2+在紫外光区的吸收强度及绿光发射强度。最后将筛选出来的荧光粉与InGaN-LED芯片组装制作成单一绿光LED器件,利用Ca7.8215MgSi4O16Cl2∶0.0525Eu2+,0.056Ce3+,0.070Mn2+所制作成的绿光LED器件发光最强,在20mA电流激发下,此LED发很强的绿光,其电致发光光谱所对应的色坐标值为:x=0.26,y=0.55。  相似文献   

4.
通过溶胶-凝胶法制备出一系列Dy3+掺杂的Y2MgTiO6(YMT∶Dy3+)荧光粉,并利用X射线衍射仪、扫描电子显微镜、荧光光谱仪对荧光粉的晶体结构、微观形貌及发光性质进行研究和分析。研究结果显示,YMT∶Dy3+荧光粉为双钙钛矿结构,Dy3+掺杂不改变样品的晶体结构。在近紫外光(352 nm)的激发下,样品的发射光谱显示出典型的Dy3+特征发射峰,分别是485 nm处的蓝光、578 nm处的黄光,以及650~700 nm的红光。当Dy3+摩尔浓度x=0.03时,荧光粉出现浓度猝灭效应,其浓度猝灭机制为电偶极子-电偶极子相互作用(d-d)。YMT∶Dy3+荧光粉的CIE色坐标明显受到Dy3+的浓度影响,其中YMT∶0.02Dy3+荧光粉的CIE色坐标为(0.406,0.407),位于暖白光区,可作为一种暖白光荧光粉应用于近紫外激发白光发光二极管(...  相似文献   

5.
完全人工光控植物生长技术的快速发展对光源的要求精益求精,发光强度高、热稳定性良好的蓝紫色荧光粉是植物生长的关键材料。本文采用固相法合成了非稀土Bi3+激活耐高温蓝紫色Zn3B2O6∶xBi3+(0≤x≤0.03)荧光粉。X射线衍射和能谱分析结果表明Bi3+成功进入Zn3B2O6基质晶格。荧光光谱观察到Zn3B2O6∶xBi3+荧光粉在430 nm(3P11S0)处呈现窄带蓝紫光,半峰全宽仅为56 nm,最佳Bi3+掺杂浓度为0.02。依据激发光谱峰形和寿命衰减行为,证明了Bi3+在Zn3B2O6基质中仅占据Z...  相似文献   

6.
为了获得具有明亮红光发射的上转换发光材料,采用简单的化学沉淀法制备了一系列Yb3+、Er3+、Mn2+掺杂的Gd2O3微晶,并对其形貌、结构和发光性能进行了表征。结果表明,Gd2O3∶10%Yb3+,1%Er3+微晶呈花状,平均粒径为2.28μm,经高温煅烧后呈现结晶性良好的立方相Gd2O3结构,且少量Mn2+掺杂并不会影响微晶的形貌和晶相。在980 nm近红外光激发下,Gd2O3∶10%Yb3+,1%Er3+微晶表现为橙红色发光,归属于Er3+4F9/24I15/2跃迁。同时,随着Mn2+掺杂浓度x(原子...  相似文献   

7.
董园园  黄榕  徐家跃  张彦 《人工晶体学报》2015,44(12):3543-3547
利用固相法合成了Eu3+掺杂的NaY(Mo/WO4)2红色荧光粉,并用对所获得的样品进行了XRD和激发-发射光谱表征.研究发现随着Eu3+掺杂量逐渐增加,发光强度随之变化.当Eu3掺杂浓度为30mo1;,荧光粉具有最强的发光强度.荧光粉能被395 nm波长紫外光有效激发,发射光谱主要体现为Eu3+的5 D0→7F2电偶极跃迁的红光发射,因此适合于解决白光LED缺乏红光成分而导致的显色性差问题.研究发现适量的W6+取代Mo6+,不但可以提高荧光粉的发光强度,而且有利于改善材料的色纯度.W6的最佳掺杂浓度为10at;.在395 nm激发下,NaY(Mo0.9W0.1O4)2∶Eu3+荧光粉的色度坐标为(0.666,0.331),优于传统商业红色荧光粉Y2O2S:Eu3+.  相似文献   

8.
采用高温固相法制备了系列蓝绿色Ca7Si2O8Cl6∶Eu2+荧光粉,并对样品进行了XRD分析、发光性能和色参数的测试。结果表明,合成的样品为单相Ca7Si2O8Cl6;在紫外光激发下,样品呈现一个不对称宽峰结构;分别监测这个发射峰,得到一个较宽的激发谱。同时研究了在样品中分别加入Sr2+和F-后荧光粉的激发和发射光谱,得到了这些离子的加入量与样品发光性能的关系,并探究了发生该现象的原因。结果表明,加入Sr2+或F-后可以得到较好的蓝绿色发光材料。  相似文献   

9.
采用高温固相法制备了白光LED用NaGd(1-x)TiO4∶xSm3+系列红色荧光粉,并对样品分别进行了X射线衍射分析和荧光光谱测试.结果表明,样品可以被紫外、近紫外和蓝光有效激发,在409 nm激发下,该荧光粉有三个主要发射峰,位于567 nm、607 nm和652 nm处,分别对应于Sm3+的4G/2→6H5/2、4G5/2→6H7/2、4G5/2→6H9/2的跃迁发射,其中607 nm处发射最强,呈现红色发光.当Sm3+的掺杂浓度为2.5mol;时,达到最佳的发光效果.因此,这种荧光粉是一种有应用潜力的白光LED红色荧光粉.  相似文献   

10.
采用溶胶-凝胶法制备了适合于近紫外激发的橙红色荧光粉Na2 ZnSiO4∶Sm3+,利用X射线衍射、扫描电镜、荧光光谱对样品的相结构、形貌及发光性能进行了表征.结果表明:制得的样品属于单斜晶系,粒径约为2 μm.样品的激发光谱在330 ~ 550 nm间呈多峰分布.在404 nm近紫外光激发下,发射光谱由峰值为566 nm,604 nm和650 nm的3个峰构成,发射主峰位于604 nm处,对应Sm3+的4 G5/2→6H7/2跃迁,呈橙红光发射.当Sm3+的掺量为3;时,其发光强度达到最大,随后减小,是由电偶极-电偶极相互作用引起的浓度猝灭.  相似文献   

11.
采用高温固相法制备CaMgP2O7∶Ce3+,Mn2+荧光粉,并对其发光性质进行探究.荧光粉CaMgP2O7∶Ce3+,Mn2+在328 nm、351 nm与587 nm的发射峰分别归属于Ce3+的5d→2FJ跃迂和Mn2的4T1 (4G)→6A1(6S)跃迁.Ce3+的掺杂有效地提高了Mn2+的发光强度,同时电荷补偿剂Li+与Na+的添加也提高了CaMgP2O7∶Ce3+,Mn2+荧光粉的发光强度,依据Dexter能量传递公式判断CaMgP2O7基质中Ce3+对Mn2+的能量传递属于电四极-电四极相互作用引起的共振能量传递.  相似文献   

12.
本文采用高温固相法制备出一种绿色荧光粉Ba3(PO4)2∶Tb3+,并通过X射线粉末衍射仪(XRD)和荧光分光光度计对所得荧光粉的结构和光谱性能进行了表征.结果 表明:Ba3(PO4)2体系中掺杂稀土离子Tb3+并没有引起结构的变化;荧光粉Ba3(PO4)2∶Tb3+的激发光谱的主峰位于485 nm,发射光谱的主峰位于548 nm、560 nm和647 rnm;荧光粉Ba3(PO4)2∶Tb3+中Tb3的最佳掺杂浓度为20mol;.由此可见,荧光粉Ba3(PO4)2∶Tb3是可被蓝光LED有效激发的绿色荧光粉.  相似文献   

13.
以二氧化锰为微波吸收剂,采用微波辐射法成功合成了CaMoO4∶Eu3+红色发光材料.用X射线粉末衍射仪、扫描电子显微镜、荧光分光光度计分别对样品的物相结构、形貌和发光性质进行了分析和表征.结果表明:所合成的CaMoO4∶Eu3+晶体结构与CaMoO4相似,属四方晶系结构;样品大颗粒呈立方形,尺寸约4~8 μm,是由200 ~ 300nm的类球形颗粒组装而成.样品的激发光谱由位于200 ~ 350 nm的一个宽带和350 ~ 500 nm的一系列尖峰组成,最大激发峰位于305 nm处;发射光谱由位于550 ~750 nm的一系列尖峰组成,最强的发射峰位于617 nm处,归属于Eu3+的5D0→7F2跃迁.当反应时间为40 min,微波功率为中高火,电荷补偿剂Li+的掺杂量为8mol;时,样品的发光强度最大,约为未掺杂电荷补偿剂样品的4倍.  相似文献   

14.
系统研究了Ba2Mg(BO3)2∶Eu3荧光粉的高温固相法制备工艺条件,发现在900 ℃C下保温3h制得的样品的发光性能最好.研究了Eu3掺杂浓度对基质晶格环境和发光性质的影响,当Eu3+浓度较低时,荧光粉在594 nm的发射峰强度最大,随着Eu3掺杂浓度的增加,Eu3+偏离对称中心的程度越来越大,当Eu3浓度超过3at;时,荧光粉在613 nm的发射峰强度开始急剧增强,浓度达到3.5at;时,613 nm的发射开始占主导,这是由于晶体结构的扭曲程度导致晶格对称性发生了较大的改变,释放了更多禁戒的5 D0 →7F2电偶极跃迁.制备的橙色荧光粉可以被近紫外InGaN芯片有效激发,应用于白光LED.  相似文献   

15.
采用高温固相法制备了Ba3La1-x-y(PO4)3∶ xDy3+,yEu3+白光荧光粉,并通过XRD和荧光光谱性能分析手段对样品的物相组成、发光性能和发光机理进行了研究.结果表明:由于Eu3+的掺杂影响了Ba3La(PO4)3∶ Dy3+荧光粉的晶体场环境,在Dy3+的6F9/2能级与Eu3+的5D0能级间发生交叉弛豫,并通过能量共振转移,Dy3向Eu3+传递能量,Ba3La1-x-y(PO4)3∶xDy3+,yEu3+荧光粉在350 nm紫外光激发下同时出现了Dy3+和Eu3+的特征发射,发射光谱中增加了红光成分,改善了色温.实验得出Dy3+和Eu3+掺杂浓度分别为0.08和0.06时,荧光粉的发射光最接近于理想白光.  相似文献   

16.
为了研究Na+掺杂对Ca2GdNbO6∶0.03Sm3+荧光粉发光性能的影响,本文采用高温固相反应法成功制备了一系列Ca2GdNbO6∶0.03Sm3+,xNa+(x=0.01、0.03、0.05、0.07、0.10;x为摩尔分数)荧光粉。XRD图谱和精修结果表明,Na+成功掺入Ca2GdNbO6∶0.03Sm3+晶格。发光性能测试结果表明,Na+的掺入提高了Ca2GdNbO6∶0.03Sm3+荧光粉的发光强度,其最佳掺杂浓度为5%。在406 nm波长激发下,荧光粉在602 nm (4G5/26H7/2)处发射峰最强且发射出橙红光。浓度猝灭结果及热稳定性研究表明,Ca2GdNbO6∶0.03Sm3+,0.05Na+基质中能量传递主要发生在最近邻离子之间,荧光粉的热猝灭激活能为0.119 eV。该荧光粉的色坐标位于橙红色区域(0.593 5,0.404 7),与国际照明委员会规定的标准色坐标(0.666,0.333)接近,表明Ca2GdNbO6∶0.03Sm3+,xNa+荧光粉在白光LED领域具有潜在的应用前景。  相似文献   

17.
双钙钛矿结构化合物具有化学稳定性高、声子能量低、易于稀土离子掺杂和多种可调变的晶体学格位等优点,是一种优良的上转换发光基质材料。本文采用高温固相法在600℃下合成了双钙钛矿结构Rb3GaF6∶Er3+,Yb3+上转换发光材料,并采用X射线粉末衍射仪(XRD)、场发射扫描电镜(SEM)和荧光光谱仪对其成分、结构和发光特性进行系统表征。在980 nm激发下,制备的样品在521和548/561 nm处产生的绿光发射分别归因于Er3+2H11/2-4I15/24S3/2-4I15/2能级上的电子跃迁,同时在656 nm处产生的红光发射对应于Er3+4F9/2-4I15/2能级上的电子跃迁。此外,本文...  相似文献   

18.
以水热法合成了球形NaY(MoO4)2∶Sm3+红色荧光粉,通过X-射线衍射(XRD)、场发射扫描电镜(FESEM)、光致荧光光谱(PL)进行表征,考察荧光粉的晶相、形貌及发光性能.研究了Sm3+掺杂浓度对发光性能的影响,通过调节体系酸度对样品形貌进行控制.实验结果表明:180℃水热反应20 h,pH=7.0时控制合成出规则球形NaY(MoO4)2粉体,当Sm3+的摩尔掺杂量为4;时,发射峰强度达到最大,继续增加Sm3+浓度,其发射峰强度减弱,出现了浓度猝灭效应.  相似文献   

19.
采用高温固相法制备纯相Y2( MoO4)3∶Dy3+荧光粉,并对其晶场及发光性质进行研究.晶场分析结果表明:Y3+格位晶场结构近似为对称性很低的C2,因此样品在近紫外区有很强f-f激发峰,适合于近紫外LED芯片.在387 nm激发下,主要发射峰为Dy3+的特征发射487 nm(蓝光,4F9/2→6H15/2)和574 nm(黄光,4F9/2→6H13/2).增大Dy3+掺杂浓度,黄光与蓝光的强度比值(Y/B)随之增大.387 nm激发下,不同Dy3+掺杂浓度荧光粉发射光的色坐标均在白光区域中.以上结果表明Y2( MoO4)3∶Dy3+是一种新型的适于近紫外LED芯片激发的白光荧光粉,发光性能良好.  相似文献   

20.
通过传统的高温固相法成功的制得了一系列紫外激发的硅酸盐荧光粉Na2 Ca3 Si2O8∶Tb3+,Eu3+.X射线衍射(XRD)研究表明所制得的荧光粉为纯相.在Na2Ca3Si2O8∶Tb3+,yEu3+荧光粉体系中,随着Eu3+的掺杂浓度增大,发射光谱中Tb3的特征峰发光强度降低而Eu3+的不断升高,并且荧光寿命不断减小,说明了Tb3+和Eu3之间能量传递方式是交换相互作用,能量传递效率(ET)达到了15.8;.此外,通过CIE色坐标观察到,随着Eu3+浓度的增加,样品从绿色变成黄色,最终变成红色.由于它多彩的颜色变化,所以它是一种用于制作多彩LED的良好材料.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号