首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
4.
5.
6.
In this paper, the first, second and mean (N?O) bond dissociation enthalpies (BDEs) were derived from the standard (p° = 0.1 MPa) molar enthalpies of formation, in the gaseous phase, ΔfHm°(g), at T = 298.15 K, of 2,2′-dipyridil N-oxide and 2,2′-dipyridil N,N′-dioxide. These values were calculated from experimental thermodynamic parameters, namely from the standard (p° = 0.1 MPa) molar enthalpies of formation, in the crystalline phase, ΔfHm°(cr), at T = 298.15 K, obtained from the standard molar enthalpies of combustion, ΔcHm°, measured by static bomb combustion calorimetry, and from the standard molar enthalpies of sublimation, at T = 298.15 K, determined from Knudsen mass-loss effusion method.  相似文献   

7.
8.
9.
10.
Standard state thermodynamic properties for aqueous sodium perrhenate at temperature in the range of (298.15 to 598.15) K and at psat were determined by high dilution solution calorimetry down to 10?4 m. Standard state partial molar heat capacities, Cp,2°, of aqueous sodium perrhenate calculated from present study are compared to literature values up to T = 398.15 K. The differences between Cp,2° of ReO4-(aq) and Cl?(aq) at lower temperature is much greater than that due to their internal molecular motions. Consequently, the perrhenate ion appears to have an ionic incomplete primary hydration shell as compared to the chloride ion. The ReO4-/Cl- difference in thermodynamic functions has now been well defined up to T = 598.15 K for other important high temperature calculations.  相似文献   

11.
Densities (ρ) and speeds of sound (u) have been measured for (l-phenylalanine + 0.01 mol · kg−1 aqueous β-cyclodextrin) and (l-histidine + 0.01 mol · kg−1 aqueous β-cyclodextrin) systems at T = (293.15, 298.15, 303.15 and 308.15) K using the density and sound velocity Meter DSA 5000 M. The ρ and u values have been utilized to evaluate values of the partial molar volume (ϕv), transfer partial molar volume (Δtrϕv), partial molar isentropic compressibility (ϕk), and transfer partial molar isentropic compressibility (Δtrϕk) of the systems studied. The experimentally measured and calculated parameters have been interpreted in terms of host-guest and ion-hydrophilic interactions operative in the systems.  相似文献   

12.
13.
The viscosities of some mineral salt viz.; potassium chloride, potassium nitrate, magnesium chloride, magnesium nitrate, at different concentrations have been determined in water and in binary aqueous solution of sodiumdodecyl sulfate (SDS) (0.007 mol · kg−1 and 0.01 mol · kg−1) at different temperatures. The data have been analyzed using Jones–Dole equation and the derivative parameters B and A have been interpreted in terms of ion–solvent and ion–ion interactions respectively. The change of Gibbs free energy of activation (ΔGη), enthalpy of activation (ΔHη), and entropy of activation (ΔSη) for viscous flow of the solutions were calculated using Eyring equation, which depicts the mechanism of viscous flow. The structure making/breaking nature of the studied electrolytes has been discussed in the light of first derivative of B-coefficient (dB/dT) over temperatures. Potassium chloride and potassium nitrate acts as structure breaker in water where as all the salts are structure makers in aqueous SDS solutions, i.e. the postmicellar and pre-micellar regions.  相似文献   

14.
Density data for dilute aqueous solutions of two amino acids (glycine, l-alanine) obtained using a flow vibrating-tube densimeter are presented together with partial molar volumes at infinite dilution (standard molar volumes, Vm,2°) calculated from the measured data. The experiments were performed at temperatures from (298 up to 443) K at pressures close to the saturation line of water, at pressures in the range from (15 to 17) MPa, and at 30 MPa. Values of an analogue of isothermal compressibility, κT,2°=-(1/Vm,2°)(?Vm,2°/?p)T, are also evaluated. Maxima on the curves Vm,2°(T) and κT,2°(T) are observed and discussed. The new data along with literature values of standard molar volumes and heat capacities are used for generating the recommended parameterization of an equation of state for standard molar thermodynamic properties of the aqueous amino acids.  相似文献   

15.
The speed of sound and density measurements in water, methanol, and benzene solutions for the solutes PEG-400, PEG-1000, and PEG-4000 at T = 298.15 K (0.05 to 0.5 mol · kg−1) are reported. The data obtained are used to calculate thermodynamic parameters such as adiabatic (isentropic) compressibility of solutions (βad), apparent molar volume (ϕV) and apparent molar compressibility (ϕK) for solute molecules in all the solvent media. The limiting partial molar volume (ϕV) and limiting partial molar compressibility (ϕK) of solute molecules are used to estimate volume of transfer and compressibility of transfer for PEG molecules from methanol to aqueous and benzene to aqueous media. The high observed negative (ϕK) values in methanol are interpreted in terms of breakdown of one-dimensional H-bonded structure of methanolic molecules. The (ϕK) values observed in water although negative but of small magnitude as compared to salts in water. Attempt is made to estimate hydration number for these molecules in aqueous solutions by applying Shiio’s method and it is observed that PEG-4000 is hydrated most. These results are discussed in terms of solute–solvent and hydrophobic interactions and effects due to conformational characteristic of high molecular weight glycol molecules.  相似文献   

16.
The density, relative permittivity, viscosity and speed of sound at T = (293.15, 298.15, 303.15, 308.15, and 313.15) K in the binary mixtures of nitromethane with 2-methoxyethanol and 2-butoxyethanol have been measured as a function of composition. From the experimental results, the excess molar volumes VE, excess Gibbs free energy of activation for viscous flow (ΔG1E), excess isentropic compressibility (κsE) and the deviations in the relative permittivity, viscosity, and speed of sound from a mole fraction average have been calculated. The viscosity data, at T = 298.15 K, were correlated with equations of Hind et al., Grunberg and Nissan, Frenkel, and McAllister. The results are discussed in terms of intermolecular interactions and structure of studied binary mixtures.  相似文献   

17.
The effect of organic solvents on micellization behaviour and thermodynamic parameters of a cationic gemini (dimeric) surfactant, C12H25(CH3)2N+–(CH2)2–N+(CH3)2C12H25·2Br?, (12-2-12) was studied in aqueous solutions over the range of T = (293.15 to 323.15) K using the conductometric technique. Ethylene glycol (EG), dimethylsulfoxide (DMSO) and 1,4-dioxan (DO) were used as organic solvents with three different contents. The critical micelle concentration (cmc) and the degree of counter ion dissociation (α) of micelles in the water and in the (water + organic solvent) mixtures including 10%, 20%, and 30% solvent contents were determined. The standard Gibbs free energy (ΔGm°), enthalpy (ΔHm°) and entropy (ΔSm°) of micellization were estimated from the temperature dependence of the cmc values. It was observed that the critical micelle concentration of the gemini surfactant and the degree of counter ion dissociation of the micelle increased as the volume percentage of organic solvent, and temperature increased. The standard Gibbs free energy of micellization was found to be less negative with the increase in the organic solvent content and temperature.  相似文献   

18.
The values of the density were measured for binary liquid mixtures of benzene and toluene with dichloromethane over entire range of concentration using a vibrating-tube densimeter at T = (288.15, 293.15, 298.15, and 303.15) K and atmospheric pressure. The excess molar volumes, calculated from the density results, are positive for the systems of dichloromethane with benzene over the whole concentration range and present an approximate sigmoid curve for the dichloromethane with toluene. The VmE values have been fitted to the Redlich–Kister polynomial equation, and other volumetric properties such as the partial molar volumes, Vi¯, the apparent molar volume, V?i, and the partial molar excess volumes at infinite dilution, (ViE¯), were calculated over the whole composition range. The Prigogine–Flory–Patterson (PFP) theory and its applicability in predicting VmE at T = 298.15 K are tested. Good agreement was found for the mixtures dichloromethane with benzene. For the mixtures dichloromethane with toluene, which shows an approximate S-shaped VmE behaviour, the correlation fails.  相似文献   

19.
20.
Densities and viscosities of binary mixtures of {methyl tert-butyl ether (MTBE) + methanol, or +ethanol, or +1-propanol, or +2-propanol, or +1-butanol, or +1-pentanol, or +1-hexanol} have been determined as a function of composition at several temperatures and atmospheric pressure. The temperatures studied were (293.15, 298.15, 303.15, and 308.15) K. The experimental results have been used to calculate the excess molar volume (VmE) and viscosity deviation (Δη). Both VmE and Δη values were negative over the entire range of mole fraction for all temperatures and systems studied. Moreover, the VmE values have been used to test the applicability of the Extended Real Associated Solution (ERAS) model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号