首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of small organic molecules with intense and switchable circularly polarized luminescence(CPL) is currently attracting great interest due to their promising applications in chiroptical devices and sensors. In this paper, CPL-active BF2-bridged azaanthracene dimers(BA1 and BA2) were facilely synthesized by incorporating boron difluoride unit to the binaphthalene. BA1 and BA2 show moderate CPL in diluted solutions, however, BA2 exhibited aggregation-amplified red CPL with large dissymmetry factor up to 1.6×10~(-2). Moreover, acid-/base-triggered CPL switch off/on were also realized via disaggregation/aggregation of BA2 in tetrahydrofuran(THF)/water binary solvents.  相似文献   

2.
Circularly polarized luminescence(CPL) materials have potential applications in three-dimensional(3 D) displays, quantum encryption, and optical sensors. The development of single-component CPL materials with polymorphic assembly and handedness inversion remains a significant challenge. Herein, we present the access of such materials by controlling the underlying assembly pathway of well-designed chiral emitters. A pair of enantiomeric platinum complexes(R)-1 and(S)-1 decorated with a chiral α-methylbenzyl isocyanide ligand were prepared. By using the mixed-solvent(THF/n-hexane, THF=tetrahydrofuran) or high-concentration condition, these complexes were found to assemble via a cooperative or isodesmic pathway with significantly enhanced yellow or red emission, respectively. The aggregate samples obtained via these conditions show efficient CPL(dissymmery factor |g_(lum)|0.02, emission quantum yield Φ20%). Interestingly, different assembly pathway leads to helical nanoribbons or nanofibers with opposite handedness from the complex with the same molecular chirality. This has been unambiguously and consistently manifested by circular dichroism and CPL spectral analysis and transmission electron, scanning electron, and atomic force microscope studies. This work demonstrates an appealing example of constructing polymorphic helical architectures with highly efficient CPL and inverted handedness thanks to the excellent assembly and emission of platinum complexes.  相似文献   

3.
Organic fluorescent molecules are gaining importance because of their potential applications in many devices. Optically active N,N′-bis((1R)-1-naphthylethyl)perylene-3,4,9,10-tetracarboxylic diimide [(R,R)-1-BNP] and N,N′-bis((1R)-2-naphthylethyl)perylene-3,4,9,10-tetracarboxylic diimide [(R,R)-2-BNP] and their antipode, [(S,S)-1-BNP and (S,S)-2-BNP], emit aggregation-induced enhanced (AIEnh) circularly polarized luminescence (CPL) on both a solid organic polymer film (poly(methyl methacrylate)) and solid inorganic KBr pellet. An opposite chirality is essential for generating CPL of inverted sign. However, a pair of enantiomeric organic molecules may not always be easy to prepare. Interestingly, the chiral perylene fluorophores synthesized in this study can emit both positive and negative AIEnh-CPL in the solid state, depending on their position on the naphthylene groups. In addition, no CPL was observed in these compounds from their dilute solutions.  相似文献   

4.
Using a Frenkel-exciton model, the degree of circular polarization of the luminescence (g(lum)) from one-dimensional, helical aggregates of chromophoric molecules is investigated theoretically. The coupling between the electronic excitation and a local, intramolecular vibrational mode is taken into account. Analytical expressions for the fluorescence band shape and g(lum) are presented for the case of strong and weak electronic coupling between the chromophoric units. Results are compared to those from numerical calculations obtained using the three particle approximation. g(lum) for the 0-0 vibronic band is found to be independent of the relative strength of electronic coupling between chromophores and excitation-vibration coupling. It depends solely on the number of coherently coupled molecules. In contrast, for the higher vibronic transitions[g(lum)] decreases with decreasing strength of the electronic coupling. In the limit of strong electronic coupling, [g(lum)] is almost constant throughout the series of vibronic transitions but for weak coupling [g(lum)] becomes vanishingly small for all vibronic transitions except for the 0-0 transition. The results are interpreted in terms of dynamic localization of the excitation during the zero point vibrational motion in the excited state of the aggregate. It is concluded that circular polarization measurements provide an independent way to determine the coherence size and bandwidth of the lowest exciton state for chiral aggregates.  相似文献   

5.
The synthesis, characterization, and luminescent behavior of trivalent Sm, Eu, Dy, and Tb complexes of two enantiomeric, octadentate, chiral, 2-hydroxyisophthalamide ligands are reported. These complexes are highly luminescent in solution. Functionalization of the achiral parent ligand with a chiral 1-phenylethylamine substituent on the open face of the complex in close proximity to the metal center yields complexes with strong circularly polarized luminescence (CPL) activity. This appears to be the first example of a system utilizing the same ligand architecture to sensitize four different lanthanide cations and display CPL activity. The luminescence dissymmetry factor, g(lum), recorded for the Eu(III) complex is one of the highest values reported, and this is the first time the CPL effect has been demonstrated for a Sm(III) complex with a chiral ligand. The combination of high luminescence intensity with CPL activity should enable new bioanalytical applications of macromolecules in chiral environments.  相似文献   

6.
Circularly polarized luminescence (CPL) of chiral Eu(III) complexes with nona- and octa-coordinated structures, [Eu(R/S-iPr-Pybox)(D-facam)(3)] (1-R/1-S; R/S-iPr-Pybox, 2,6-bis(4R/4S-isopropyl-2-oxazolin-2-yl)pyridine; D-facam, 3-trifluoroacetyl-d-camphor), [Eu(S,S-Me-Ph-Pybox)(D-facam)(3)] (2-SS; S,S-Me-Ph-Pybox, 2,6-bis(4S-methyl-5S-phenyl-2-oxazolin-2-yl)pyridine), and [Eu(Phen)(D-facam)(3)] (3; Phen, 1,10-phenanthroline) are reported, and their structural features are discussed on the basis of X-ray crystallographic analyses. These chiral Eu(III) complexes showed relatively intense photoluminescence due to their (5)D(0) → (7)F(1) (magnetic-dipole) and (5)D(0) → (7)F(2) (electric-dipole) transition. The dissymmetry factors of CPL (g(CPL)) at the former band of 1-R and 1-S were as large as -1.0 and -0.8, respectively, while the g(CPL) of 3 at the (5)D(0) → (7)F(1) transition was relatively small (g(CPL) = -0.46). X-ray crystallographic data indicated specific ligand-ligand hydrogen bonding in these compounds which was expected to stabilize their chiral structures even in solution phase. CPL properties of 1-R and 1-S were discussed in terms of transition nature of lanthanide luminescence.  相似文献   

7.
[Eu(bda)(2)](-) (bda = 2,2'-bipyridine-6,6'-dicarboxylic acid) produces intense circularly polarized luminescence (CPL) in aqueous solutions in the presence of (S)-2-pyrrolidone-5-carboxylic acid upon UV irradiation, although the molecular structure of the europium(III) complex is achiral. The mechanism for the induction of CPL was preliminarily attributed to distortions induced by association with an amino acid to generate chirality in the achiral complex. The optical anisotropy factor (g(lum) value) for the (5)D(0) → (7)F(1) transition was 0.03 in the presence of 1.0 mol dm(-3) of the amino acid. Analysis of the CPL intensity as a function of the amino acid concentration gave an association constant between those of [Eu(bda)(2)](-) and the amino acid, K(aso) = 0.55 ± 0.09 mol(-1) dm(3). These results demonstrate the potential of [Eu(bda)(2)](-) to act as a luminescent chiral-sensing reagent in microscopic spectroscopy.  相似文献   

8.
The helicity of the (SSS)-Delta enantiomer of a terbium and europium(iii) complex is inverted on reversible binding to 'drug site II' of serum albumin, signalled by a switch in its circularly polarised emission; no such behaviour occurs with the (RRR)-Lambda complexes, thereby defining a unique chiroptical probe of albumin binding.  相似文献   

9.
Supramolecular polymers with different functionalities have been continuously developed in the past decade because of their indispensable role in soft materials.However,pure organic supramolecular polymers with stable room temperature phosphorescence(RTP)emission were very rarely reported for the difficulties of synthesis and achieving RTP in solution.Herein,soluble helical supramolecular polymers with circularly polarized room-temperature phosphorescence were developed via a facile hostguest strategy.Through assembly,a transition from pure fluorescence to almost pure RTP emission was achieved.Adjusting the asymmetry of guest could easily control the chiroptical property of supramolecular polymers.This work provides new opportunities for the design and development of intelligent soft functional soft materials.  相似文献   

10.
Circularly polarized (CP) light, as a special form of polarized light, demonstrates potential application prospects in future displays and optoelectronic technologies. Circularly polarized luminescence (CPL) from chiral chromophores is an ideal method to directly generate CP light, but how to design efficient emitters is always a perplexing problem. Among various chiral materials, CPL materials with axial chirality can provide us with clear structural parameters and information to further explore the structure-activity relationship. Herein, we systematically summarize the development status of axially chiral compounds with CPL properties from two aspects of photoluminescence and electroluminescence, covering metal complexes, polymers, supramolecular assemblies, simple organic molecules, and liquid crystals systems. In addition, we initially explore the relationship between CPL performance and axially chiral configuration, and the current challenges and opportunities in this vibrant field are also discussed.  相似文献   

11.
《中国化学快报》2023,34(3):107649
It is of great significance to construct organic circularly polarized luminescence systems (CPL) with large luminescence dissymmetry factors (glum) for practical applications. Here we report organic CPL systems constructed by merging triplet-triplet annihilation upconversion chromophores in cellulose matrices. The chirality of the matrix is transferred to the achiral chromophores of photon upconversion and then the multistep energy transfer processes of upconversion amplify glum. The glum value of upconversion CPL in the left-handed ethyl cellulose and the right-handed (acetyl) ethyl cellulose are up to +0.1 and ?0.15, respectively. The study provides a straightforward approach for constructing solid organic upconversion CPL materials with large glum, which may expand the application potentials of organic chiroptical materials.  相似文献   

12.
Circularly polarized emission from helical MOPV4 aggregates is studied theoretically based on a Hamiltonian including excitonic coupling, exciton phonon coupling, and site disorder. The latter is modeled via a Gaussian distribution of site energies. The frequency dependence of the circularly polarized luminescence dissymmetry g(lum)(omega) contains structural information about the low-energy-neutral (excitonic) polaron from which emission originates. Near the 0-0 emission frequency, g(lum)(omega) provides a measure of the exciton coherence length, while at lower energies, in the vicinity of the sideband frequencies, g(lum)(omega) probes the polaron radius. The present work focuses on how the 0-0 dissymmetry, g(lum)(0-0), relates to the emitting exciton's coherence function, from which the coherence length is deduced. In the strong disorder limit where the exciton is localized on a single chromophore, g(lum)(0-0) is zero. As disorder is reduced and the coherence function expands, /g(lum)(0-0)/ increases more rapidly than the sideband dissymmetries, resulting in a pronounced surge in g(lum)(omega) near the 0-0 transition frequency. The resulting spectral shape of g(lum)(omega) is in excellent agreement with recent experiments on MOPV4 aggregates. In the limit of very weak disorder, corresponding to the motional narrowing regime, the coherence function extends over the entire helix. In this region, g(lum)(0-0) undergoes a surprising sign reversal but only for helices which are between n+12 and n+1 complete turns (n = 0,1,...). This unusual sign change is due to the dependence of the rotational line strength on long-range exciton coherences which are also responsible for a heightened sensitivity of g(lum)(omega) to long-range excitonic coupling.  相似文献   

13.
To realize the handedness controllable circularly polarized luminescence(CPL) system remains challenging. Herein, the solvent-mediated CPL inversion and amplification systems were successfully constructed by camptothecin derivative(CPT-A). Due to the planar structure of N,N-dimethylformamide, it could coassemble with CPT-A, resulting in the alteration of glumfrom –0.0082 to +0.0085 by increasing water content. While in the non-planar solvent(hexafluoroisopropanol), the glumwas amplified to 0.034...  相似文献   

14.
The research in circularly polarized luminescence has attracted wide interest in recent years.Efforts on one side are directed toward the development of chiral ...  相似文献   

15.
16.
《中国化学快报》2022,33(11):4918-4923
Fluorenylmethyloxycarbonyl (Fmoc)-protected amino acids are effective building blocks in self-assembled architectures at hierarchical levels, which however show limited luminescent properties and chiroptical activities. Here we introduce a charge-transfer strategy to build two-component luminescent materials with emerged circularly polarized luminescence properties. A library of Fmoc-amino acids was built, which selectively form charge-transfer complexes with the electron-deficient acceptor. Embedding in amorphous polymer matrix or physical grinding could trigger the charge-transfer luminescence with adjusted wavelengths in a general manner. X-ray diffraction results suggest the multiple binding modes between donor and acceptor. And, the solution-processed coassembly could selectively exhibit circularly polarized luminescence with high dissymmetry g-factors. This work illustrates a noncovalent charge-transfer strategy to construct luminescent and chiroptical organic composites based on the easy-accessible and economic chiral N-terminal aromatic amino acids.  相似文献   

17.
Lanthanide(III) complexes of the enantiopure chiral hexaaza tetraamine macrocycle L, 2(R),7(R),18(R),23(R)-1,8,15,17,24,31-hexaazatricyclo[25.3.1.1.0.0]-dotriaconta-10,12,14,26,28,30-hexaene, as well as of its meso-type 2(R),7(R),18(S),23(S)-isomeric macrocycle L1, have been synthesized and characterized by spectroscopic methods. The 2D NMR spectra confirm the identity of these complexes and indicate C2 symmetry of the [LnL]3+ and Cs symmetry of the [LnL1]3+ complexes. The crystal structures of the [PrL(NO3)(H2O)2](NO3)2, [EuL(NO3)(H2O)2](NO3)2, [DyL(NO3)2]2[Dy(NO3)5] x 5CH3CN, [YbL(NO3)2]2[Yb(NO3)5] x 5CH3CN, [YbL(H2O)2](NO3)3 x H2O, and [EuL1(NO3)(H2O)2]0.52[EuL1(NO3)2]0.48(NO3)1.52 x 0.48H2O complexes have been determined by single-crystal X-ray diffraction. In all complexes, the lanthanide(III) ions are coordinated by six nitrogen atoms of the macrocycle L or L1, but for each type of complex, the conformation of the macrocycle and the axial ligation are different. The crystallographic, NMR, and CD data show that the [YbL]3+ complex exists in two stable forms. Both forms of the Yb(III) complex have been isolated, and their interconversion was studied in various solvents. The two forms of [YbL]3+ complex correspond to two diastereomers of ligand L, which differ in the sense of the helical twist and the configuration at the stereogenic amine nitrogen atoms. In one of the stereoisomers, the macrocycle L of (RRRR) configuration at the stereogenic cyclohexane carbon atoms adopts the (RSRS) configuration at the amine nitrogen atoms, while in the other stereoisomer, the macrocycle L of (RRRR) configuration at the stereogenic cyclohexane carbon atoms adopts the (SSSS) configuration at the amine nitrogen atoms. The (RRRR)(RSRS) isomer is quantitatively converting to the (RRRR)(SSSS) isomer in water solution, while the reverse process is observed for an acetonitrile solution, thus representing the rare case of helicity inversion controlled by the solvent.  相似文献   

18.
Two kinds of chiral 1,1′‐binaphthol (BINOL)‐based polymer enantiomers were designed and synthesized by the polymerization of 5,5′‐((2,2′‐bis (octyloxy)‐[1,1′‐binaphthalene]‐3,3′‐diyl)bis(ethyne‐2,1‐diyl))bis(2‐hydroxybenzaldehyde) ( M1 ) with alkyl diamine ( M2 ) via nucleophilic addition–elimination reaction. The resulting chiral polymers can exhibit mirror image cotton effects either in the absence or in the presence of Zn2+ ion. Almost no fluorescence or circularly polarized luminescence (CPL) emission could be observed for two chiral BINOL‐based polymer enantiomers in the absence of Zn2+. Interestingly, the chiral polymers can show strong fluorescence and CPL response signals upon the addition of Zn2+, which can be attributed to Zn2+‐coordination fluorescence enhancement effect. This work can develop a new strategy on the design of the novel CPL materials via metal‐coordination reaction. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1282–1288  相似文献   

19.
Recently, a method to calculate the absorption and circular dichroism (CD) spectra based on the exciton coupling has been developed. In this work, the method was utilized for the decomposition of the CD and circularly polarized luminescence (CPL) spectra of a multichromophoric system into chromophore contributions for recently developed through‐space conjugated oligomers. The method which has been implemented using rotatory strength in the velocity form and therefore it is gauge‐invariant, enables us to evaluate the contribution from each chromophoric unit and locally excited state to the CD and CPL spectra of the total system. The excitonic calculations suitably reproduce the full calculations of the system, as well as the experimental results. We demonstrate that the interactions between electric transition dipole moments of adjacent chromophoric units are crucial in the CD and CPL spectra of the multichromophoric systems, while the interactions between electric and magnetic transition dipole moments are not negligible. © 2018 Wiley Periodicals, Inc.  相似文献   

20.
Photoexcitations in helical aggregates of a functionalized, chiral oligophenylenevinylene (MOPV) are described going beyond the Born-Oppenheimer approximation, in the form of dressed (polaronic) Frenkel excitons. This allows for accurate modeling of the experimentally observed wavelength dependence of the circular polarization in fluorescence, which directly probes the non-adiabatic nature of the electron-vibration (EV) coupling in this system. The fluorescence photon is emitted from a nuclear geometry in which one MOPV and its two nearest neighbors have a nuclear equilibrium that differs appreciably from the ground state due to the presence of the excited state. The absorption and emission band shape and the circular dichroism are consistent with a coherence range of the emitting excitation of approximately two neighboring molecules. Random fluctuations in the zero-order excited-state energy of the MOPVs (disorder) limit the exciton delocalization and can be described by a Gaussian distribution of energies with a width sigma=0.12 eV and a spatial correlation length l0 approximately 5 molecules. We find that disorder and EV coupling act synergistically in localizing the emitting exciton to a single MOPV in the aggregate with 95% probability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号