首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A highly loaded and integrated core–brush three-dimensional (3D) DNA nanostructure is constructed by programmatically assembling a locked DNA walking arm (DA) and hairpin substrate (HS) into a repetitive array along a well-designed DNA track generated by rolling circle amplification (RCA) and is applied as a 3D DNA nanomachine for rapid and sensitive intracellular microRNA (miRNA) imaging and sensing. Impressively, the homogeneous distribution of the DA and HS at a ratio of 1 : 3 on the DNA track provides a specific walking range for the DA to avoid invalid and random self-walking and notably improve the executive ability of the core–brush 3D DNA nanomachine, which easily solves the major technical challenges of traditional Au-based 3D DNA nanomachines: low loading capacity and low executive efficiency. As a proof of concept, the interaction of miRNA with the 3D DNA nanomachine could initiate the autonomous and progressive operation of the DA to cleave the HS for ultrasensitive ECL detection of target miRNA-21 with a detection limit as low as 3.57 aM and rapid imaging in living cells within 15 min. Therefore, the proposed core–brush 3D DNA nanomachine could not only provide convincing evidence for sensitive detection and rapid visual imaging of biomarkers with tiny change, but also assist researchers in investigating the formation mechanism of tumors, improving their recovery rates and reducing correlative complications. This strategy might enrich the method to design a new generation of 3D DNA nanomachine and promote the development of clinical diagnosis, targeted therapy and prognosis monitoring.

This study designed a highly loaded and integrated core–brush 3D DNA nanomachine for miRNA imaging and sensing, which easily solves the major technical challenges of traditional Au-based 3D nanomachines: low loading capacity and low executive efficiency.  相似文献   

2.
Cell status changes are typically accompanied by the simultaneous changes of multiple microRNA (miRNA) levels. Thus, simultaneous and ultrasensitive detection of multiple miRNA biomarkers shows great promise in early cancer diagnosis. Herein, a facile single-molecule fluorescence imaging assay was proposed for the simultaneous and ultrasensitive detection of multiple miRNAs using only one capture anti-DNA/RNA antibody (S9.6 antibody). Two complementary DNAs (cDNAs) designed to hybridize with miRNA-21 and miRNA-122 were labelled with Cy3 (cDNA1) and Cy5 (cDNA2) dyes at their 5′-ends, respectively. After hybridization, both miRNA-21/cDNA1 and miRNA-122/cDNA2 complexes were captured by S9.6 antibodies pre-modified on a coverslip surface. Subsequently, the Cy3 and Cy5 dyes on the coverslip surface were imaged by the single-molecule fluorescence setup. The amount of miRNA-21 and miRNA-122 was quantified by counting the image spots from the Cy3 and Cy5 dye molecules in the green and red channels, respectively. The proposed assay displayed high specificity and sensitivity for singlet miRNA detection both with a detection limit of 5 fM and for multiple miRNA detection both with a detection limit of 20 fM. Moreover, it was also demonstrated that the assay could be used to detect multiple miRNAs simultaneously in human hepatocellular cancer cells (HepG2 cells). The proposed assay provides a novel biosensing platform for the ultrasensitive and simple detection of multiple miRNA expressions and shows great prospects for early cancer diagnosis.

A single-molecule assay for multiple microRNA detection.  相似文献   

3.
癌细胞中microRNA(miRNA)的灵敏成像对于疾病的诊断治疗具有重要意义, 其中miRNA-21通常在多种癌细胞中异常表达. 本文将DNA功能化的金纳米颗粒与发射波长分离的荧光染料FAM和Cy5.5修饰的DNA通过含有光控基团PC-linker的DNA4作为桥梁进行自组装, 构建了纳米传感器GDC. 将302 nm紫外光作为启动开关, 用其照射该体系时, Cy5.5修饰的DNA3被释放, 其荧光强度可作为内参比信号, 用于标定进入细胞的组装体含量; 细胞中miRNA-21作为催化分子, 与外加燃料Fuel DNA共同作用下可实现催化放大, FAM修饰的DNA2被释放且被猝灭的荧光信号得以恢复, 并作为检测信号. 通过2种荧光信号强度(FL)的检测及FLFAM/FLCy5.5比值的计算, 达到定量分析细胞中miRNA含量的目的. 该体系可扣除因细胞内组装体含量不同造成的背景信号误差, 不仅能显著提高检测准确度, 还因存在催化循环而大大降低了检出限, 比传统方法至少降低了3个数量级. 该传感器的检出限为23.1 pmol/L, 通过定量计算得出HeLa细胞中miRNA的含量为0.0236 nmol/L.  相似文献   

4.
We rationally engineered an elegant entropy-driven DNA nanomachine with three-dimensional track and applied it for intracellular miRNAs imaging. The proposed nanomachine is activated by target miRNA binding to drive a walking leg tethered to gold nanoparticle with a high density of DNA substrates. The autonomous and progressive walk on the DNA track via the entropy-driven catalytic reaction of intramolecular toehold-mediated strand migration leads to continuous disassembly of DNA substrates, accompanied by the recovery of fluorescence signal due to the specific release of a dye-labeled substrate from DNA track. Our nanomachine outperforms the conventional intermolecular reaction-based gold nanoparticle design in the context of an improved sensitivity and kinetics, attributed to the enhanced local effective concentrations of working DNA components from the proximity-induced intramolecular reaction. Moreover, the nanomachine was applied for miRNA imaging inside living cells.  相似文献   

5.
We rationally engineered an elegant entropy‐driven DNA nanomachine with three‐dimensional track and applied it for intracellular miRNAs imaging. The proposed nanomachine is activated by target miRNA binding to drive a walking leg tethered to gold nanoparticle with a high density of DNA substrates. The autonomous and progressive walk on the DNA track via the entropy‐driven catalytic reaction of intramolecular toehold‐mediated strand migration leads to continuous disassembly of DNA substrates, accompanied by the recovery of fluorescence signal due to the specific release of a dye‐labeled substrate from DNA track. Our nanomachine outperforms the conventional intermolecular reaction‐based gold nanoparticle design in the context of an improved sensitivity and kinetics, attributed to the enhanced local effective concentrations of working DNA components from the proximity‐induced intramolecular reaction. Moreover, the nanomachine was applied for miRNA imaging inside living cells.  相似文献   

6.
Aberrant expressions of biomolecules occur much earlier than tumor visualized size and morphology change, but their common measurement strategies such as biopsy suffer from invasive sampling process. In vivo imaging of slight biomolecule expression difference is urgently needed for early cancer detection. Fluorescence of rare earth nanoparticles (RENPs) in second near-infrared (NIR-II) region makes them appropriate tool for in vivo imaging. However, the incapacity to couple with signal amplification strategies, especially programmable signal amplification strategies, limited their application in lowly expressed biomarkers imaging. Here we develop a 980/808 nm NIR programmed in vivo microRNAs (miRNAs) magnifier by conjugating activatable DNAzyme walker set to RENPs, which achieves more effective NIR-II imaging of early stage tumor than size monitoring imaging technique. Dye FD1080 (FD1080) modified substrate DNA quenches NIR-II downconversion emission of RENPs under 808 nm excitation. The miRNA recognition region in DNAzyme walker is sealed by a photo-cleavable strand to avoid “false positive” signal in systemic circulation. Upconversion emission of RENPs under 980 nm irradiation activates DNAzyme walker for miRNA recognition and amplifies NIR-II fluorescence recovery of RENPs via DNAzyme catalytic reaction to achieve in vivo miRNA imaging. This strategy demonstrates good application potential in the field of early cancer detection.  相似文献   

7.
The monitoring of microRNA (miRNA) expression levels is of great importance in cancer diagnosis. In the present work, based on two cascaded toehold-mediated strand displacement reactions (TSDRs), we have developed a label- and enzyme-free target recycling signal amplification approach for sensitive electronic detection of miRNA-21 from human breast cancer cells. The junction probes containing the locked G-quadruplex forming sequences are self-assembled on the senor surface. The presence of the target miRNA-21 initiates the first TSDR and results in the disassembly of the junction probes and the release of the active G-quadruplex forming sequences. Subsequently, the DNA fuel strand triggers the second TSDR and leads to cyclic reuse of the target miRNA-21. The cascaded TSDRs thus generate many active G-quadruplex forming sequences on the sensor surface, which associate with hemin to produce significantly amplified current response for sensitive detection of miRNA-21 at 1.15 fM. The sensor is also selective and can be employed to monitor miRNA-21 from human breast cancer cells.  相似文献   

8.
DNA nanowalkers moving progressively along a prescribed DNA track are useful tools in biosensing, molecular theranostics and biosynthesis. However, stochastic DNA nanowalkers that can perform in living cells have been largely unexplored. We report the development of a novel stochastic bipedal DNA walker that, for the first time, realizes direct intracellular base excision repair (BER) fluorescence activation imaging. In our design, the bipedal walker DNA was generated by BER-related human apurinic/apyrimidinic endonuclease 1 (APE1)-mediated cleavage of DNA sequences at an abasic site in the intracellular environment, and it autonomously travelled on spherical nucleic acid (SNA) surfaces via catalyzed hairpin assembly (CHA). Our nanomachine outperforms the conventional single leg-based DNA walker with an improved sensitivity, kinetics and walking steps. Moreover, in contrast to the single leg-based DNA walker, the bipedal DNA walker is capable of monitoring the fluorescence signal of reduced APE1 activity, thus indicating amplified intracellular imaging. This bipedal DNA-propelled DNA walker presents a simple and modular amplification mechanism for intracellular biomarkers of interest, providing an invaluable platform for low-abundance biomarker discovery leading to the accurate identification and effective treatment of cancers.

The developed DNA bipedal walker represents improved sensitivity, kinetics and walking steps for intracellular fluorescence imaging of base-excision repairing.  相似文献   

9.
Exosomal microRNAs (miRNAs) have considerable potential as pivotal biomarkers to monitor cancer development, dis-ease progression, treatment effects and prognosis. Here, we report an efficient target recycling amplification process (TRAP) for the digital detection of miRNAs using photonic resonator absorption microscopy. We achieve multiplex digital detection with sub-attomolar sensitivity in 20 minutes, robust selectivity for single nucleotide variants, and a broad dynamic range from 1 aM to 1 pM. Compared with traditional qRT-PCR, TRAP showed similar accuracy in profiling exosomal miRNAs derived from cancer cells, but also exhibited at least 31-fold and 61-fold enhancement in the limits of miRNA-375 and miRNA-21 detection, respectively. The TRAP approach is ideal for exosomal or circulating miRNA biomarker quantification, where the miRNAs are present in low concentrations or sample volume, with potentials for frequent, low-cost, and minimally invasive point-of-care testing.  相似文献   

10.
A new type of purely organic light-harvesting phosphorescence energy transfer (PET) supramolecular assembly is constructed from 4-(4-bromophenyl)-pyridine modified β-cyclodextrin (CD-PY) as a donor, cucurbit[8]uril (CB[8]) as a mediator, rhodamine B (RhB) as an acceptor, and adamantane modified hyaluronic acid (HA-ADA) as a cancer cell targeting agent. Interestingly, the complexation of free CD-PY, which has no RTP emission in aqueous solution, with CB[8] results in the formation of CD-PY@CB[8] pseudorotaxane with an RTP emission at 510 nm. Then the addition of RhB leads to an efficient light-harvesting PET process with highly efficient energy transfer and an ultrahigh antenna effect (36.42) between CD-PY@CB[8] pseudorotaxane and RhB. Importantly, CD-PY@CB[8]@RhB assembles with HA-ADA into nanoparticles with further enhanced delayed emission at 590 nm. The nanoparticles could be successfully used for mitochondria targeted imaging in A549 cancer cells. This aqueous-state PET based on a supramolecular assembly strategy has potential application in delayed fluorescence cell imaging.

A new type of purely organic light-harvesting PET supramolecular assembly is constructed with efficient energy transfer and ultrahigh antenna effect. Moreover, the assembly could be used for mitochondria targeted imaging in A549 cancer cells.  相似文献   

11.
A sticky-flare gold nanoparticle probe(AuNP-probe) is designed by the combination of locked nucleic acid functionalized silencing of microRNA technology for intracellular microRNA-21(miRNA-21) sensitively detecting, fluorescence imaging,localizing and silencing. The limit of detection is as low as 0.01 n M. Overexpressed miRNA-21 in cancer cells serves as endogenous drug release stimuli to trigger the release of probe-loaded doxorubicin(Dox), which soon translocates into cell nuclei. This multifunctional Dox-loaded AuNP-probe(Dox-AuNP-probe) could induce cancer cell apoptosis effectively through the synergistic effect of gene silencing and chemotherapy. This Dox-AuNP-probe exhibits superior drug potency compared to free Dox molecules, with a cell inhibition rate of 57%(but only 20% for Dox) to wild-type cancer cells and 30%(but 0% for Dox) to drug-resistent cancer cells after 72 h, and this strategy not only has the function of sensing, but also can effectively bypass drug resistance. In MCF-7 xenograft tumor-bearing mice, the Dox-AuNP-probes show greater inhibition for tumor tissues than miRNA-21 targeted AuNP-probes(Targeting-AuNP-probe) or free Dox molecules. Therefore, the Dox-AuNP-probe represents a promising nanotheranostic platform for future applications in cancer molecular imaging and therapy, especially providing a potential strategy to treat resistant cancers.  相似文献   

12.
It is of great value to detect biological molecules in live cells. However, probes for imaging low-abundance targets in live cells are limited by the one-to-one signal-triggered model. Here, we introduce the concept of the amplified FRET nanoflare, which employs high-abundance endogenous mRNA as fuel strands to amplify the detection of low abundance intracellular miRNA. As far as we know, this is the first report of an endogenous mRNA-powered nanomachine for intracellular molecular detection. We experimentally prove the mechanism of the nanomachine and demonstrate its specificity and sensitivity. The proposed amplified FRET nanoflare can act as an excellent intracellular molecular detection strategy that is promising for biological and medical applications.  相似文献   

13.
Molecular imaging is an essential tool for disease diagnostics and treatment. Direct imaging of low‐abundance nucleic acids in living cells remains challenging because of the relatively low sensitivity and insufficient signal‐to‐background ratio of conventional molecular imaging probes. Herein, we report a class of DNA‐templated gold nanoparticle (GNP)–quantum dot (QD) assembly‐based probes for catalytic imaging of cancer‐related microRNAs (miRNA) in living cells with signal amplification capacity. We show that a single miRNA molecule could catalyze the disassembly of multiple QDs with the GNP through a DNA‐programmed thermodynamically driven entropy gain process, yielding significantly amplified QD photoluminescence (PL) for miRNA imaging. By combining the robust PL of QDs with the catalytic amplification strategy, three orders of magnitude improvement in detection sensitivity is achieved in comparison with non‐catalytic imaging probe, which enables facile and accurate differentiation between cancer cells and normal cells by miRNA imaging in living cells.  相似文献   

14.
Roy S  Soh JH  Gao Z 《Lab on a chip》2011,11(11):1886-1894
In this article, we report on direct detection of microRNAs (miRNAs) on a microarray by differential interference contrast (DIC) imaging technique. While the best resolution achieved with a fluorescence scanner is ~1 μm, the DIC imaging technique adopted in our study offers the possibility of imaging individual reporting gold nanoparticles, or, in other words, individual miRNA strands. Due to its unrivalled resolution, the present technique could detect as low as 300 copies of target miRNAs in a sample volume of 1.0 μl. With the greatly improved sensitivity, the amount of total RNA needed in the assay is reduced to only a few nanograms, offering an excellent opportunity for fast and direct miRNA profiling without engaging any labeling and amplification procedure. Expression patterns of hsa-let-7 family members in healthy versus cancer cells analyzed on our microarray, are found to be consistent with the patterns obtained on a commercial microarray and those reported in the literature.  相似文献   

15.
Abnormal anaerobic metabolism leads to a lowering of the pH of many tumours, both within specific intracellular organelles and in the surrounding extracellular regions. Information relating to pH-fluctuations in cells and tissues could aid in the identification of neoplastic lesions and in understanding the determinants of carcinogenesis. Here we report an amphiphilic fluorescent pH probe (CS-1) that, as a result of its temporal motion, provides pH-related information in cancer cell membranes and selected intracellular organelles without the need for specific tumour targeting. Time-dependent cell imaging studies reveal that CS-1 localizes within the cancer cell-membrane about 20 min post-incubation. This is followed by migration to the lysosomes at 30 min before being taken up in the mitochondria after about 60 min. Probe CS-1 can selectively label cancer cells and 3D cancer spheroids and be readily observed using the green fluorescence channel (λem = 532 nm). In contrast, CS-1 only labels normal cells marginally, with relatively low Pearson''s correlation coefficients being found when co-incubated with standard intracellular organelle probes. Both in vivo and ex vivo experiments provide support for the suggestion that CS-1 acts as a fluorescent label for the periphery of tumours, an effect ascribed to proton-induced aggregation. A much lower response is seen for muscle and liver. Based on the present results, we propose that sensors such as CS-1 may have a role to play in the clinical and pathological detection of tumour tissues or serve as guiding aids for surgery.

A self-assembled amphiphilic fluorescent probe allows pH-fluctuations within cancer cells and tumour tissues to be readily detected.  相似文献   

16.
A duplex–triplex switchable DNA nanomachine was fabricated and has been applied for the demonstration of intracellular acidification and apoptosis of Ramos cells, with graphene oxide (GO) not only as transporter but also as fluorescence quencher. The machine constructed with triplex-forming oligonucleotide exhibited duplex–triplex transition at different pH conditions. By virtue of the remarkable difference in affinity of GO with single-stranded DNA and triplex DNA, and the super fluorescence quenching efficiency of GO, the nanomachine functions as a pH sensor based on fluorescence resonance energy transfer. Moreover, taking advantage of the excellent transporter property of GO, the duplex–triplex/GO nanomachine was used to sense pH changes inside Ramos cells during apoptosis. Fluorescence images showed different results between living and apoptotic cells, illustrating the potential of DNA scaffolds responsive to more complex pH triggers in living systems.
Figure
The caption/legend for the online abstract figure: Schematic illustration of cell apoptosis detection in Ramos cells by using duplex-triplex/GO nanocomplex  相似文献   

17.
The monitoring of cancer biomarkers is crucial to the early detection of cancer. However, a limiting factor in biomarker analysis is the ability to obtain the multilayered information of various biomarker molecules located at different parts of cells from the plasma membrane to the cytoplasm. A two‐stage dissociation nanoparticle system based on multifunctionalized polydopamine‐coated gold nanoparticles (Au@PDA NPs) is reported, which allows for the two‐stage imaging of cancer biomarkers in single cells. We demonstrate the feasibility of this strategy on sialic acids (SAs), p53 protein, and microRNA‐21 (miRNA‐21) in MCF‐7 breast cancer cells by two custom‐built probes. Furthermore, the multicolor fluorescence information extracted is used for the monitoring of biomarker expression changes under different drug combinations, which allows us to investigate the complex interactions between various cancer biomarkers and to describe the cancer biomarker‐synergic networks in single cells.  相似文献   

18.
19.
In this study, we developed a novel assay that simultaneously detects multiple miRNAs (microRNAs) within a single capillary by combining a tandem adenosine-tailed DNA bridge-assisted splinted ligation with denaturing capillary gel electrophoresis with laser-induced fluorescence. This proposed method not only represents a significant improvement in resolution but also allows for the detection of multiple miRNAs within a single capillary based on the length differences of specified target bridge DNA. The assay's linear range covers three orders of magnitude (1.0 nM to 1.0 pM) with a limit of detection (S/N=3) as low as 190 fM (2.5 zmol). Five miRNAs of Epstein-Barr virus (EBV) were also detected in EBV-infected nasopharyngeal carcinoma cells, while they did not appear in non-virus infected cells. Moreover, the electropherogram indicated that the screening of isomiRs (isomer of miRNA) of BART2 by CE-LIF is feasible by our proposed method. The developed electrophoresis-based method for miRNA detection is fast, amplification-free, multiplexed and cost-effective, making it potentially applicable to large-scale screening of isomiRs.  相似文献   

20.
Monitoring labile Zn2+ homeostasis is of great importance for the study of physiological functions of Zn2+ in biological systems. Here we report a novel ratiometric fluorescent Zn2+ sensor, CPBT, which was constructed based on chelation-induced alteration of FRET efficiency. CPBT was readily cell membrane permeable and showed a slight preferential localization in the endoplasmic reticulum. With this sensor, 3D ratiometric Zn2+ imaging was first realized in the head of zebra fish larvae via Z-stack mode. CPBT could track labile Zn2+ in a large number of cells through ratiometric flow cytometric assay. More interestingly, both ratiometric fluorescence imaging and flow cytometric assay demonstrated that the labile Zn2+ level in MCF-7 cells (cisplatin-sensitive) decreased while that in SKOV3 cells (cisplatin-insensitive) increased after cisplatin treatment, indicating that Zn2+ may play an important role in cisplatin induced signaling pathways in these cancer cells.

A Zn2+ sensor exhibiting 3D ratiometric imaging and flow cytometric ability was constructed based on the FRET mechanism, and cisplatin-induced endogenous labile Zn2+ fluctuations were monitored in real time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号