首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
用粗粒化分子动力学(MD)模拟方法从分子层次研究两组分聚合物共混体系相分离过程中的动力学. 在相分离初期, 相区尺寸不随时间增加而变化; 在相分离中期, 相区尺寸与时间有很好的标度关系, 标度指数(α=1/3)符合Lifshiz-Slyozov提出的以扩散为主导的蒸发-凝聚机理的标度预测; 在相分离后期, 体系实现宏观相分离, 相区尺寸不再随时间改变而变化. 体积分数小的高分子链尺寸在相分离过程中先收缩再扩张, 在实现宏观相分离后, 高分子链尺寸又回到本体状态尺寸.  相似文献   

2.
室温离子液体作为一种新型的反应介质正在受到人们的关注,近十年来成为了化学领域的研究热点。随着人们对离子液体结构与性质研究的不断深入和计算方法的快速发展,分子模拟已是研究离子液体的结构和性质的有力工具。本文介绍了分子动力学(molecular dynamics,MD)的基本原理,分子力场的种类,以及离子液体分子动力学模拟一般采用的AMBER、OPLS和CHARMM三种力场的构建形式。综述了近年来纯组分离子液体、混合组分离子液体分子动力学模拟方法研究取得的成果和最新进展,并分析了主要存在的问题。展望了离子液体分子动力学模拟的研究方向和前景,同时还提出了包含极化作用和静电远程作用的离子液体分子动力学模拟研究的基本思路。  相似文献   

3.
运用分子动力学模拟, 采用直接加热法和微正则(NVE)系综法计算离子液体[emim]Br的熔点, 以期获得较好的熔点预测方法. 直接加热法通过分析体系的非键合能、密度、径向分布函数、扩散系数和平动序参数随温度的变化关系判断熔点; NVE系综法则通过获得固液共存体系判断熔点. 直接加热法中, 体系易出现过热问题; NVE系综法则能有效克服过热问题, 是在模拟研究中应优先选择的离子液体熔点预测方法.  相似文献   

4.
Vibrational spectroscopy is a powerful tool for studying the microstructure of liquids, and anatomizing the nature of the vibrational spectrum (VS) is promising for investigating changes in the properties of liquid structures under external conditions. In this study, molecular dynamics (MD) simulations have been performed to explore changes in the VS of 1-ethyl-3-methylimidazolium hexafluorophosphate ([Emim][PF6]) ionic liquid (IL) under an external electric field (EEF) ranging from 0 to 10 V·nm-1 at 350 K. First, the vibrational spectra for [Emim][PF6] IL as well as its cation and anion are separately obtained, and the peaks are strictly assigned. The results demonstrate that the VS calculated by MD simulation can well reproduce the main characteristic peaks in the experimentally measured spectrum. Then, the vibrational spectra of the IL under various EEFs from 0 to 10 V·nm-1 are investigated, and the intrinsic origin of the changes in the vibrational bands (VBs) at 50, 183, 3196, and 3396 cm-1 is analyzed. Our simulation results indicate that the intensities of the VBs at 50 and 183 cm-1 are enhanced. In addition, the VB at 50 cm-1 is redshifted by about 16 cm-1 as the EEF is varied from 0 to 2 V·nm-1, and the redshift wavenumber increases to 33 cm-1 as the EEF is increased to 3 V·nm-1 and beyond. However, the intensities of the VBs at 3196 and 3396 cm-1 show an obvious decrease. Meanwhile, the VB at 3396 cm-1 is redshifted by about 16 cm-1 when the EEF increases to 3 V·nm-1, and the redshift increases to 33 cm-1 with an increase in the EEF beyond 4 V·nm-1. The intensity of the VB at 50 cm-1 increases because of the increase in the total dipole moment of each anion and cation (from 4.34 to 5.46 D), and the redshift is attributed to the decrease in the average interaction energy per ion pair (from -378.7 to -298.0 kJ·mol-1) with increasing EEF. The intensity of the VB at 183 cm-1 increases on account of the more consistent orientations for cations in the system with increasing EEF. The VB at 3196 cm-1 weakens visibly because a greater number of hydrogen atoms appear around the carbon atoms on the methyl/ethyl side chains and the vibrations of the corresponding carbon-hydrogen bonds are suppressed under the action of the EEF. Furthermore, the intensity of the VB at 3396 cm-1 decreases due to the decrease in the intermolecular +C-H···F- hydrogen bonds (HBs), while the relaxation effect that is beneficial for the formation of HBs simultaneously exists in the system under the varying EEF, thus causing a redshift of the VB at 3396 cm-1.  相似文献   

5.
吴丽  李臻  王芳  陈静  夏春谷 《分子催化》2012,26(5):456-468
离子液体是由有机阳离子和无机/有机阴离子构成的盐类,一般在室温或接近于室温下呈液态,因此常被称为室温离子液体(RTIL).依据不同的划分标准,离子液体有多种分类方式:根据年代的不同可将离子液体分为第一代、第二代及第三代离子液体,例如:烷基咪唑和烷基吡啶的金属卤化物盐等[1];根据阳离子的不同可将离子液体分为季鏻  相似文献   

6.
都萍  杨春光  张丽  刘焕英 《化学通报》2015,78(11):1023-1027
运用分子动力学模拟方法,对纳米尺度氩液体线的物理性质进行了研究。文中模拟计算了纳米线的熔点温度以及气液平衡状态下液态区密度、气态区密度和液体线的半径,并分析了模拟盒子尺寸和模拟温度对液体线物性的影响。结果表明,由于在初始结构中增加了气体分子,当模拟温度不变时,随模拟盒子尺寸的增加,液态区密度增大,气态区密度减小。但模拟盒子尺寸较小时,液体线半径不随模拟盒子尺寸发生变化。模拟计算所得的液态区密度十分接近宏观尺度氩液体密度时,模拟盒子的尺寸较合适。当模拟盒子尺寸固定不变时,液态区密度和气态区密度随温度的变化趋势与文献中宏观尺度氩液体和气体密度的变化趋势相同。结论可以为进一步系统地分析纳米尺度液体线的稳定性提供一定的依据。  相似文献   

7.
利用粒子交换分子动力学模拟方法(Particle exchange molecular dynamics,PEMD)研究了Lennard-Jones流体的气液相图.模拟中,用两个耦合箱分别代表液相和气相.通过直接比较两箱的粒子化学势来控制交换粒子,从而达到两相平衡.采用Widom方法计算化学势.两模拟箱平衡时具有相同的温度、压强和粒子化学势.模拟的气液相图结果与利用其它方法得到的Lennard-Jones流体气液相图符合得很好.  相似文献   

8.
聚氨酯弹性体相分离程度的研究   总被引:3,自引:0,他引:3  
热塑型聚氨酯弹性体(TPUE)的动态力学性能和热性能研究已有许多报导,但多集中于弹性体的链结构及其组成等方面,本文则侧重于研究聚醚氨酯(ET)和聚酯氨酯的相分离过程及其程度,考察硬段含量(W_h)和软段分子量(M_(n·3)等因素对微相结构的影响。  相似文献   

9.
本文利用分子动力学模拟研究了外电场对咪唑类离子液体1-乙基-3-甲基咪唑六氟磷酸盐(EMIMPF6)从0到4000 cm−1范围内振动谱的影响。研究结果表明,在没有外电场时利用分子动力学模拟计算得到的从400到4000 cm−1的振动带可以重现实验测得的谱。当外电场从0到9 V·nm−1变化时,在50.0和199.8 cm−1处的振动带强度持续增强然后趋于饱和,而从400到4000 cm−1的振动带强度明显减弱并最终消失。此外,在外电场从0变到2 V·nm−1时,50.0 cm−1的振动带红移了16.7 cm−1,然后当外电场变化到3 V·nm−1及更大时,该振动带红移增大到33.3 cm−1。在外电场从0变到3 V·nm−1时,3396.6 cm−1的振动带红移大约16.7 cm−1,然后当外电场增大到4 V·nm−1甚至更大时,该振动带红移33.3 cm−1,但是从0到4000 cm−1的其他振动带的位置几乎没有变化。基于对模拟结果和先前报道文献的进一步分析,对于50.0 cm−1的振动带,增加的外电场增强了阳离子和阴离子之间的极性使阳离子和阴离子间的偶极矩增大,因此该振动带的强度不断增大然后达到饱和。对于199.8 cm−1的振动带增加的外电场增强了乙基链的扭转,使该振动带的强度增大并达到饱和。对于从400到4000 cm−1的其他振动带,增加的外电场使EMIMPF6中的阳离子和阴离子的取向更一致,并且可以推测这种更一致的取向可能会削弱振动带的强度甚至使它们消失。50.0 cm−1处振动带的红移可能是由于外电场破坏了EMIMPF6内部的静电场分布进而减弱了阳离子和阴离子间的相互作用。3396.6 cm−1处振动带的红移可归功于外电场减弱了氮原子与阳离子咪唑环上酸性氢原子间形成的氢键的拉伸振动。对于其他的振动带,由于官能团固有的拉伸、弯曲、转动振动不受外电场的影响,外电场没有改变振动带的位置。  相似文献   

10.
水溶性丙烯酰胺类共聚物 ,作为粘度改性剂 ,在工业上已得到广泛应用 .特别近年来 ,它们大量应用于石油工业强化采油技术 ,引起了人们很大的重视[1] .目前 ,这类用途的聚合物 ,主要在聚丙烯酰胺结构中 ,引入阴离子组分和不断增高产物分子量的方法 ,以提高聚合物溶液粘度和增粘效果 ,然而 ,在二价金属离子 (如Ca2 + ,Mg2 + 等 )存在下 ,羧酸阴离子型丙烯酰胺类共聚物很容易络合发生沉淀 ,从而失去增粘作用[2 ] .同时这类聚合物中酰胺基不稳定 ,易发生水解反应转化为羧酸基 ,并随温度升高而加剧[3 ] ,因此在温度较高的应用条件下 ,二价金属…  相似文献   

11.
采用分子动力学模拟的方法在298K时对1.33mol/L,2.71mol/L,4.14mol/L和5.12mol/L的NaCl水溶液的微观结构进行了研究。模拟发现浓度对离了近程水化结构的影响不大,浓溶液中Na^+,Cl^-之间有两种缔合方式,接触缔合离子对和溶剂分隔的缔合离子对。这表明在建立可适用于高浓度条件下的电解质溶液热力学模型时应考虑离子缔合的贡献。  相似文献   

12.
不同浓度下NaCl水溶液的分子动力学模拟   总被引:4,自引:0,他引:4  
周健  陆小华  王延儒  时钧  汪文川 《化学学报》2001,59(12):2070-2075
采用分子动力学模拟的方法在298K时对1.33mol/L,2.71mol/L,4.14mol/L和5.12mol/L的NaCl水溶液的微观结构进行了研究。模拟发现浓度对离了近程水化结构的影响不大,浓溶液中Na^+,Cl^-之间有两种缔合方式,接触缔合离子对和溶剂分隔的缔合离子对。这表明在建立可适用于高浓度条件下的电解质溶液热力学模型时应考虑离子缔合的贡献。  相似文献   

13.
在293.15-323.15 K范围内, 测定了13种常见离子液体及其25组混合体系的电导率. 利用Vogel-Tammann-Fulcher (VTF)方程对电导率数据进行拟合, 并通过方程式中的拟合参数分析了离子液体混合后其阴阳离子间缔合作用的变化规律. 结果表明,在相同温度下, 离子液体的阳离子侧链越短,阴离子电荷越分散, 阴阳离子间的氢键作用力越弱,离子液体的电导率越大, 其中阴离子的影响比阳离子更明显.混合离子液体中离子间的缔合作用不仅与阴阳离子的种类有关,而且与混合物的组成有关.  相似文献   

14.
LiCl-Urea两元体系离子液体的研究   总被引:1,自引:1,他引:1  
自从1914年第一种离子液体[EtNH3]NO3问世以来,室温离子液体的研究与应用取得了飞速的发展,离子液体以其诸多的优良性能,在催化、有机反应、萃取、以及气相色谱、电化学中得到了广泛地应用。近几年来,多元离子液体体系的研究受到关注。本文报导了由LiCl简单盐和Urea形成的二元体系离子液体,最低共熔点为55℃(LiCl的熔点是608℃,尿素本身的熔点是132℃)。  相似文献   

15.
利用动态密度泛函(Dynamic density functional theory, DDFT)方法研究了三维受限下嵌段共聚物的微观相分离, 讨论了共聚物链长和表面吸附强度对微观相形成与取向的影响. 体系中随机分布的等径微球提供三维限制结构, 体积分数为0.6. 增加微球的半径和体积分数, 能够使其从破坏微相规整结构的纳米掺杂过渡到提供三维限制结构. 调整嵌段共聚物与微球表面的相互作用对微相形成与取向有重要影响.  相似文献   

16.
用小角激光光散射(SALLS)、相差显微镜(PCM)、示差扫描量热仪(DSC)和偏光显微镜(POM)研究了聚丙烯/二元乙丙橡胶(iPP/EPR)共混体系的相分离行为和等温结晶行为.发现iPP/EPR(50/50,W/W)发生的液-液相分离遵循spinodal机理.通过Cahn-Hilliard方程求得了不同实验温度下iPP/EPR的表观扩散系数(Dapp)以及spinodal温度(Ts).考察了不同相分离程度的iPP/EPR体系结晶动力学,发现延长相分离时间(tps)或提高相分离温度(Tps)均会导致半结晶时间(t1/2)增大,即结晶速率降低.这被归于EPR成核作用的降低.动力学分析结果表明Avrami模型适用于描述该体系的等温结晶过程,其结晶机理基本不受相分离程度的影响,结晶均以瞬时成核和三维生长为主.  相似文献   

17.
采用光学显微镜、光散射和扫描电镜等技术对聚醚砜(PES)/环氧树脂/二(2,6-二甲基苯胺基)甲烷体系的相分离过程进行了研究. 实验结果表明在该体系的相分离的演化过程中存在着明显的慢动态相的粘弹性效应, 同时对于PES含量较低的体系(PES-13.2 wt%和15.9 wt%), 在120和140 ℃固化时均观察到二次相分离现象, 而PES含量较高的体系(PES-18.5 wt%), 在同样温度下固化时仅观察到一次相分离过程.  相似文献   

18.
唐晓林  赵琳  励亮  张红东  武培怡 《化学学报》2007,65(21):2449-24492453
采用二维相关分析技术对聚醚砜(PES)/环氧树脂/二(2,6-二甲基苯胺基)甲烷体系的相分离过程的光散射数据进行了分析研究. 分析结果表明二维光散射分析可以提供一维光散射较难得到的信息: 在该体系相分离的演化过程早期, 即扩散控制期内, 体系中较小尺寸相区的粗大化早于较大的相区. 在相分离的中后期, 较小尺寸的富集相因碰撞融合产生更大尺寸相区的变化优先于较大尺寸相区的粗大化过程. 其原因可能是: 一方面这种增长方式比较有利于体系的能量较快地降低, 另一方面是在相分离的中后期界面运动导致的流动作用影响不容忽视.  相似文献   

19.
采用分子力学和分子动力学模拟方法 ,研究了不同变质程度烟煤的三维分子构型和能量参数。结果表明 :随变质程度的增加 ,煤分子内平行的芳香片层结构增大。不同变质程度烟煤分子在团聚前后的成键相互作用能仅略有变化 ,其中扭转能Et 的变化相对较为显著 ,并且扭转能随煤阶的增加呈逐渐减小的趋势。非成键作用能 ,特别是超过三个原子的范德华作用能 ,是煤中的重要相互作用能 ,是模型分子团聚的重要驱动力 ,对于烟煤分子聚集状态的形成起着决定性的作用。同时随煤阶的升高 ,超过三个原子的范德华作用能逐渐增加。模型分子的总势能随煤阶的变化呈两头高、中间低的趋势 ,与煤的一些宏观物理性质有一定的相一致性。  相似文献   

20.
本文用分子动力学方法研究了室温离子液体1-甲基-3-丁基咪唑六氟化磷(BMIM+/PF6-)在金红石(110)晶面的结构性质,旨在模拟染料敏化太阳能电池中的电解液/半导体界面性质.模拟结果表明离子液体的密度函数在界面处出现最大值,并成有序的“双层”结构排列,在金红石表面区域,阳离子(BMIM+)的侧链有明显伸长的趋势,且咪唑环倾向平行于金红石(110)晶面.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号