首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An efficient strategy for designing charge-transfer complexes using coinage metal cyclic trinuclear complexes (CTCs) is described herein. Due to opposite quadrupolar electrostatic contributions from metal ions and ligand substituents, [Au(μ-Pz-(i-C3H7)2)]3·[Ag(μ-Tz-(n-C3F7)2)]3 (Pz = pyrazolate, Tz = triazolate) has been obtained and its structure verified by single crystal X-ray diffraction – representing the 1st crystallographically-verified stacked adduct of monovalent coinage metal CTCs. Abundant supramolecular interactions with aggregate covalent bonding strength arise from a combination of M–M′ (Au → Ag), metal–π, π–π interactions and hydrogen bonding in this charge-transfer complex, according to density functional theory analyses, yielding a computed binding energy of 66 kcal mol−1 between the two trimer moieties – a large value for intermolecular interactions between adjacent d10 centres (nearly doubling the value for a recently-claimed Au(i) → Cu(i) polar-covalent bond: Proc. Natl. Acad. Sci. U.S.A., 2017, 114, E5042) – which becomes 87 kcal mol−1 with benzene stacking. Surprisingly, DFT analysis suggests that: (a) some other literature precedents should have attained a stacked product akin to the one herein, with similar or even higher binding energy; and (b) a high overall intertrimer bonding energy by inferior electrostatic assistance, underscoring genuine orbital overlap between M and M′ frontier molecular orbitals in such polar-covalent M–M′ bonds in this family of molecules. The Au → Ag bonding is reminiscent of classical Werner-type coordinate-covalent bonds such as H3N: → Ag in [Ag(NH3)2]+, as demonstrated herein quantitatively. Solid-state and molecular modeling illustrate electron flow from the π-basic gold trimer to the π-acidic silver trimer with augmented contributions from ligand-to-ligand’ (LL′CT) and metal-to-ligand (MLCT) charge transfer.

A stacked Ag3–Au3 bonded (66 kcal mol−1) complex obtained crystallographically exhibits charge-transfer characteristics arising from multiple cooperative supramolecular interactions.  相似文献   

2.
Organic donor–acceptor (D–A) co-crystals have attracted much interest due to their important optical and electronic properties. Co-crystals having ⋯DADA⋯ π-stacked morphologies are especially interesting because photoexcitation produces a charge-transfer (CT) exciton, D˙+–A˙, between adjacent D–A molecules. Although several studies have reported on the steady-state optical properties of this type of CT exciton, very few have measured the dynamics of its formation and decay in a single D–A co-crystal. We have co-crystallized a peri-xanthenoxanthene (PXX) donor with a N,N-bis(3-pentyl)-2,5,8,11-tetraphenylperylene-3,4:9,10-bis(dicarboximide) (Ph4PDI) acceptor to give an orthorhombic PXX–Ph4PDI ⋯DADA⋯ π-stacked co-crystal with a CT transition dipole moment that is perpendicular to the transition moments for Sn ← S0 excitation of PXX and Ph4PDI. Using polarized, broadband, femtosecond pump–probe microscopy, we have determined that selective photoexcitation of Ph4PDI in the single co-crystal results in CT exciton formation within the 300 fs instrument response time. At early times (0.3 ≤ t ≤ 500 ps), the CT excitons decay with a t−1/2 dependence, which is attributed to CT biexciton annihilation within the one-dimensional ⋯DADA⋯ π-stacks producing high-energy, long-lived (>8 ns) electron–hole pairs in the crystal. These energetic charge carriers may prove useful in applications ranging from photovoltaics and opto-electronics to photocatalysis.

Femtosecond transient absorption microscopy of donor–acceptor single co-crystals shows that photogenerated charge transfer excitons in one-dimensional donor–acceptor π stacks annihilate to produce high-energy, long-lived electrons and holes.  相似文献   

3.
A change in the sign of the ground-state electron spin polarization (ESP) is reported in complexes where an organic radical (nitronylnitroxide, NN) is covalently attached to a donor–acceptor chromophore via two different meta-phenylene bridges in (bpy)Pt(CAT-m-Ph-NN) (mPh-Pt) and (bpy)Pt(CAT-6-Me-m-Ph-NN) (6-Me-mPh-Pt) (bpy = 5,5′-di-tert-butyl-2,2′-bipyridine, CAT = 3-tert-butylcatecholate, m-Ph = meta-phenylene). These molecules represent a new class of chromophores that can be photoexcited with visible light to produce an initial exchange-coupled, 3-spin (bpy˙, CAT+˙ = semiquinone (SQ), and NN), charge-separated doublet 2S1 (S = chromophore excited spin singlet configuration) excited state. Following excitation, the 2S1 state rapidly decays to the ground state by magnetic exchange-mediated enhanced internal conversion via the 2T1 (T = chromophore excited spin triplet configuration) state. This process generates emissive ground state ESP in 6-Me-mPh-Pt while for mPh-Pt the ESP is absorptive. It is proposed that the emissive polarization in 6-Me-mPh-Pt results from zero-field splitting induced transitions between the chromophoric 2T1 and 4T1 states, whereas predominant spin–orbit induced transitions between 2T1 and low-energy NN-based states give rise to the absorptive polarization observed for mPh-Pt. The difference in the sign of the ESP for these molecules is consistent with a smaller excited state 2T14T1 gap for 6-Me-mPh-Pt that derives from steric interactions with the 6-methyl group. These steric interactions reduce the excited state pairwise SQ-NN exchange coupling compared to that in mPh-Pt.

A change in the sign of the ground state electron spin polarization (ESP) is reported in complexes where an organic radical (nitronylnitroxide, NN) is covalently attached to a donor–acceptor chromophore via two different meta-phenylene bridges.  相似文献   

4.
Deuterium labelled compounds are of significant importance in chemical mechanism investigations, mass spectrometric studies, diagnoses of drug metabolisms, and pharmaceutical discovery. Herein, we report an efficient hydrogen deuterium exchange reaction using deuterium oxide (D2O) as the deuterium source, enabled by merging a tetra-n-butylammonium decatungstate (TBADT) hydrogen atom transfer photocatalyst and a thiol catalyst under light irradiation at 390 nm. This deuteration protocol is effective with formyl C–H bonds and a wide range of hydridic C(sp3)–H bonds (e.g. α-oxy, α-thioxy, α-amino, benzylic, and unactivated tertiary C(sp3)–H bonds). It has been successfully applied to the high incorporation of deuterium in 38 feedstock chemicals, 15 pharmaceutical compounds, and 6 drug precursors. Sequential deuteration between formyl C–H bonds of aldehydes and other activated hydridic C(sp3)–H bonds can be achieved in a selective manner.

A selective hydrogen deuterium exchange reaction with formyl C–H bonds and a wide range of hydridic C(sp3)–H bonds has been achieved by merging tetra-n-butylammonium decatungstate photocatalyst and a thiol catalyst under 390 nm light irradiation.  相似文献   

5.
Here, we report multinuclear organometallic molecular wires having (2,5-diethynylthiophene)diyl-Ru(dppe)2 repeating units. Despite the molecular dimensions of 2–4 nm the multinuclear wires show high conductance (up to 10−2 to 10−3G0) at the single-molecule level with small attenuation factors (β) as revealed by STM-break junction measurements. The high performance can be attributed to the efficient energy alignment between the Fermi level of the metal electrodes and the HOMO levels of the multinuclear molecular wires as revealed by DFT–NEGF calculations. Electrochemical and DFT studies reveal that the strong Ru–Ru interaction through the bridging ligands raises the HOMO levels to access the Fermi level, leading to high conductance and small β values.

Multinuclear organometallic molecular wires having (diethynylthiophene)diyl-Ru(dppe)2 repeating units show high conductance with small attenuation factors. The strong Ru–Ru interaction is the key for the long-range carrier transport.  相似文献   

6.
The synthesis of a range of brominated-Bn-containing (n = 1, 2) polycyclic aromatic hydrocarbons (PAHs) is achieved simply by reacting BBr3 with appropriately substituted alkynes via a bromoboration/electrophilic C–H borylation sequence. The brominated-Bn-PAHs were isolated as either the borinic acids or B-mesityl-protected derivatives, with the latter having extremely deep LUMOs for the B2-doped PAHs (with one example having a reduction potential of E1/2 = −0.96 V versus Fc+/Fc, Fc = ferrocene). Mechanistic studies revealed the reaction sequence proceeds by initial alkyne 1,1-bromoboration. 1,1-Bromoboration also was applied to access a number of unprecedented 1-bromo-2,2-diaryl substituted vinylboronate esters directly from internal alkynes. Bromoboration/C–H borylation installs useful C–Br units onto the Bn-PAHs, which were utilised in Negishi coupling reactions, including for the installation of two triarylamine donor (D) groups onto a B2-PAH. The resultant D–A–D molecule has a low optical gap with an absorption onset at 750 nm and emission centered at 810 nm in the solid state.

The synthesis of a range of brominated-Bn-containing (n = 1, 2) polycyclic aromatic hydrocarbons (PAHs) is achieved simply by reacting BBr3 with appropriately substituted alkynes via a bromoboration/electrophilic C–H borylation sequence.  相似文献   

7.
The Heisenberg exchange coupling parameter J (H = −2JSi · Sj) characterises the isotropic magnetic interaction between unpaired electrons, and it is one of the most important spin Hamiltonian parameters of multi-spin open shell systems. The J value is related to the energy difference between high-spin and low-spin states, and thus computing the energies of individual spin states are necessary to obtain the J values from quantum chemical calculations. Here, we propose a quantum algorithm, B̲ayesian ex̲change coupling parameter calculator with b̲roken-symmetry wave functions (BxB), which is capable of computing the J value directly, without calculating the energies of individual spin states. The BxB algorithm is composed of the quantum simulations of the time evolution of a broken-symmetry wave function under the Hamiltonian with an additional term jS2, the wave function overlap estimation with the SWAP test, and Bayesian optimisation of the parameter j. Numerical quantum circuit simulations for H2 under a covalent bond dissociation, C, O, Si, NH, OH+, CH2, NF, O2, and triple bond dissociated N2 molecule revealed that the BxB can compute the J value within 1 kcal mol−1 of errors with less computational costs than conventional quantum phase estimation-based approaches.

A quantum algorithm “Bayesian exchange coupling parameter calculator with broken-symmetry wave function (BxB)” enables us to calculate Heisenberg exchange coupling parameter J without inspecting total energies of individual spin states, within 1 kcal mol−1 of energy tolerance.  相似文献   

8.
Aqueous room temperature phosphorescence (aRTP) from purely organic materials has been intriguing but challenging. In this article, we demonstrated that the red aRTP emission of 2Br–NDI, a water-soluble 4,9-dibromonaphthalene diimide derivative as a chloride salt, could be modulated by anion–π and intermolecular electronic coupling interactions in water. Specifically, the rarely reported stabilization of anion–π interactions in water between Cl and the 2Br–NDI core was experimentally evidenced by an anion–π induced long-lived emission (λAnion–π) of 2Br–NDI, acting as a competitive decay pathway against the intrinsic red aRTP emission (λPhos) of 2Br–NDI. In the initial expectation of enhancing the aRTP of 2Br–NDI by inclusion complexation with macrocyclic cucurbit[n]urils (CB[n]s, n = 7, 8, 10), we surprisingly found that the exclusion complexation between CB[8] and 2Br–NDI unconventionally endowed the complex with the strongest and longest-lived aRTP due to the strong intermolecular electronic coupling between the nπ* orbit on the carbonyl rims of CB[8] and the ππ* orbit on 2Br–NDI in water. It is anticipated that these intriguing findings may inspire and expand the exploration of aqueous anion–π recognition and CB[n]-based aRTP materials.

The aqueous room temperature phosphorescence of 2Br–NDI is modulated by long-lived-emitting anion–π interactions and tremendously enhanced by intermolecular electronic coupling interactions with the ISC-boosting carbonyl rims of CB[8] host.  相似文献   

9.
We report the first planar hexacoordinate gallium (phGa) center in the global minimum of the GaBe6Au6+ cluster which has a star-like D6h geometry with 1A1g electronic state, possessing a central gallium atom encompassed by a Be6 hexagon and each Be–Be edge is further capped by an Au atom. The electronic delocalization resulting in double aromaticity (both σ and π) provides electronic stability in the planar form of the GaBe6Au6+ cluster. The high kinetic stability of the title cluster is also understood by Born–Oppenheimer molecular dynamics simulations. The energy decomposition analysis in combination with the ‘natural orbitals for chemical valence’ theory reveals that the bonding in the GaBe6Au6+ cluster is best expressed as the doublet Ga atom with 4s24p1 electronic configuration forming an electron-sharing π bond with the doublet Be6Au6+ moiety followed by Ga(s)→[Be6Au6+] σ-backdonation and two sets of Ga(p)←[Be6Au6+] σ-donations.

A star-like texture containing a planar hexacoordinate gallium center is reported in the lowest energy isomer of the GaBe6Au6+ cluster. High thermodynamic and kinetic stability of the title cluster makes it suitable candidate for experimental realization.  相似文献   

10.
The use of donor–π–acceptor (D–π–A) skeletons is an effective strategy for the design of fluorophores with red-shifted emission. In particular, the use of amino and boryl moieties as the electron-donating and -accepting groups, respectively, can produce dyes that exhibit high fluorescence and solvatochromism. Herein, we introduce a dithienophosphole P-oxide scaffold as an acceptor–spacer to produce a boryl- and amino-substituted donor–acceptor–acceptor (D–A–A) π-system. The thus obtained fluorophores exhibit emission in the near-infrared (NIR) region, while maintaining high fluorescence quantum yields even in polar solvents (e.g. λem = 704 nm and ΦF = 0.69 in CH3CN). A comparison of these compounds with their formyl- or cyano-substituted counterparts demonstrated the importance of the boryl group for generating intense emission. The differences among these electron-accepting substituents were examined in detail using theoretical calculations, which revealed the crucial role of the boryl group in lowering the nonradiative decay rate constant by decreasing the non-adiabatic coupling in the internal conversion process. The D–A–A framework was further fine-tuned to improve the photostability. One of these D–A–A dyes was successfully used in bioimaging to visualize the blood vessels of Japanese medaka larvae and mouse brain.

Combination of electron-accepting diarylboryl terminal groups and dithienophosphole oxide spacers with electron-donating triarylamine moieties produces donor–acceptor–acceptor type π-systems, which exhibit emissions in the near-infrared region.  相似文献   

11.
Abundant n → π* interactions between adjacent backbone carbonyl groups, identified by statistical analysis of protein structures, are predicted to play an important role in dictating the structure of proteins. However, experimentally testing the prediction in proteins has been challenging due to the weak nature of this interaction. By amplifying the strength of the n → π* interaction via amino acid substitution and thioamide incorporation at a solvent exposed β-turn within the GB1 proteins and Pin 1 WW domain, we demonstrate that an n → π* interaction increases the structural stability of proteins by restricting the ϕ torsion angle. Our results also suggest that amino acid side-chain identity and its rotameric conformation play an important and decisive role in dictating the strength of an n → π* interaction.

Amino acid residues adopt a right-handed α-helical conformation with increasing strength of the n → π* interaction. We also demonstrate a direct consequence of n → π* interactions on enhancing the structural stability of proteins.  相似文献   

12.
Amomum Villosum Lour. (A. villosum) is a folk medicine that has been used for more than 1300 years. However, study of the polysaccharides of A. villosum is seriously neglected. The objectives of this study are to explore the structural characteristics of polysaccharides from A. villosum (AVPs) and their effects on immune cells. In this study, the acidic polysaccharides (AVPG-1 and AVPG-2) were isolated from AVPs and purified via anion exchange and gel filtration chromatography. The structural characteristics of the polysaccharides were characterized by methylation, HPSEC-MALLS-RID, HPLC, FT-IR, SEM, GC-MS and NMR techniques. AVPG-1 with a molecular weight of 514 kDa had the backbone of → 4)-α-d-Glcp-(1 → 3,4)-β-d-Glcp-(1 → 4)-α-d-Glcp-(1 →. AVPG-2 with a higher molecular weight (14800 kDa) comprised a backbone of → 4)-α-d-Glcp-(1 → 3,6)-β-d-Galp-(1 → 4)-α-d-Glcp-(1 →. RAW 264.7 cells were used to investigate the potential effect of AVPG-1 and AVPG-2 on macrophages, and lipopolysaccharide (LPS) was used as a positive control. The results from bioassays showed that AVPG-2 exhibited stronger immunomodulatory activity than AVPG-1. AVPG-2 significantly induced nitric oxide (NO) production as well as the release of interleukin (IL)-6 and tumor necrosis factor alpha (TNF-α), and upregulated phagocytic capacities of RAW 264.7 cells. Real-time PCR analysis revealed that AVPG-2 was able to turn the polarization of macrophages to the M1 direction. These results suggested that AVPs could be explored as potential immunomodulatory agents of the functional foods or complementary medicine.  相似文献   

13.
Spiro rhodamine (Rho)-naphthalenediimide (NDI) electron donor–acceptor orthogonal dyads were prepared to generate a long-lived charge separation (CS) state based on the electron spin control approach, i.e. to form the 3CS state, not the 1CS state, to prolong the CS state lifetime by the electron spin forbidden feature of the charge recombination process of 3CS → S0. The electron donor Rho (lactam form) is attached via three σ bonds, including two C–C and one N–N bonds (Rho-NDI), or an intervening phenylene, to the electron acceptor NDI (Rho-Ph-NDI and Rho-PhMe-NDI). Transient absorption (TA) spectra show that fast intersystem crossing (ISC) (<120 fs) occurred to generate an upper triplet state localized on the NDI moiety (3NDI*), and then to form the CS state. For Rho-NDI in both non-polar and polar solvents, a long-lived 3CS state (lifetime τ = 0.13 μs) and charge separation quantum yield (ΦCS) up to 25% were observed, whereas for Rho-Ph-NDI (τT = 1.1 μs) and Rho-PhMe-NDI (τT = 2.0 μs), a low-lying 3NDI* state was formed by charge recombination (CR) in n-hexane (HEX). In toluene (TOL), however, CS states were observed for Rho-Ph-NDI (0.37 μs) and Rho-PhMe-NDI (0.63 μs). With electron paramagnetic resonance (EPR) spectra, weak electronic coupling between the Rho and NDI moieties for Rho-NDI was proved. Time-resolved EPR (TREPR) spectra detected two transient species including NDI-localized triplets (formed via SOC-ISC) and a 3CS state. The CS state of Rho-NDI features the largest dipolar interaction (|D| = 184 MHz) compared to Rho-Ph-NDI (|D| = 39 MHz) and Rho-PhMe-NDI (|D| = 41 MHz) due to the smallest distance between Rho and NDI moieties. For Rho-NDI, the time-dependent e,aa,e phase change of the CS state TREPR spectrum indicates that the long-lived CS state is based on the electron spin control effect.

Spiro compact rhodamine-naphthalenediimide electron donor–acceptor dyads show a long-lived charge separated state (lifetime: 0.72 μs) based on the electron spin control effect were reported.  相似文献   

14.
The first examples of late transition metal η5-arsolyls (L = CO, P(OMe)3; R = Ph, Me, Et, SiMe3; R′ = Ph, H, Me, Et, Me) serve as ditopic donors to extraneous metal centres (M = PtII, AuI, HgII) through both conventional As → M and polar-covalent (dative) Co → M interactions.

Cobalt carbonyl reacts with arsoles to provide the first late transition metal η5-arsolyls. These serve as ditopic donors to extraneous metal centres (M = PtII, AuI, HgII) through both conventional AsM and polar-covalent (dative) CoM interactions.  相似文献   

15.
16.
The use of radical bridging ligands to facilitate strong magnetic exchange between paramagnetic metal centers represents a key step toward the realization of single-molecule magnets with high operating temperatures. Moreover, bridging ligands that allow the incorporation of high-anisotropy metal ions are particularly advantageous. Toward these ends, we report the synthesis and detailed characterization of the dinuclear hydroquinone-bridged complexes [(Me6tren)2MII2(C6H4O22−)]2+ (Me6tren = tris(2-dimethylaminoethyl)amine; M = Fe, Co, Ni) and their one-electron-oxidized, semiquinone-bridged analogues [(Me6tren)2MII2(C6H4O2˙)]3+. Single-crystal X-ray diffraction shows that the Me6tren ligand restrains the metal centers in a trigonal bipyramidal geometry, and coordination of the bridging hydro- or semiquinone ligand results in a parallel alignment of the three-fold axes. We quantify the p-benzosemiquinone–transition metal magnetic exchange coupling for the first time and find that the nickel(ii) complex exhibits a substantial J < −600 cm−1, resulting in a well-isolated S = 3/2 ground state even as high as 300 K. The iron and cobalt complexes feature metal–semiquinone exchange constants of J = −144(1) and −252(2) cm−1, respectively, which are substantially larger in magnitude than those reported for related bis(bidentate) semiquinoid complexes. Finally, the semiquinone-bridged cobalt and nickel complexes exhibit field-induced slow magnetic relaxation, with relaxation barriers of Ueff = 22 and 46 cm−1, respectively. Remarkably, the Orbach relaxation observed for the Ni complex is in stark contrast to the fast processes that dominate relaxation in related mononuclear NiII complexes, thus demonstrating that strong magnetic coupling can engender slow magnetic relaxation.

A semiquinone radical bridging two trigonal bipyramidal metal centers facilitates strong magnetic exchange and single-molecule magnet behavior.  相似文献   

17.
This work emphasizes easy access to α-vinyl and aryl amino acids via Ni-catalyzed cross-electrophile coupling of bench-stable N-carbonyl-protected α-pivaloyloxy glycine with vinyl/aryl halides and triflates. The protocol permits the synthesis of α-amino acids bearing hindered branched vinyl groups, which remains a challenge using the current methods. On the basis of experimental and DFT studies, simultaneous addition of glycine α-carbon (Gly) radicals to Ni(0) and Ar–Ni(ii) may occur, with the former being more favored where oxidative addition of a C(sp2) electrophile to the resultant Gly–Ni(i) intermediate gives a key Gly–Ni(iii)–Ar intermediate. The auxiliary chelation of the N-carbonyl oxygen to the Ni center appears to be crucial to stabilize the Gly–Ni(i) intermediate.

We have developed Ni-catalyzed reductive coupling of N-carbonyl protected α-pivaloyloxy glycine with Csp2-electrophiles that enabled facile preparation of α-amino acids, including those bearing hindered branched vinyl groups.  相似文献   

18.
While the development of chiral molecules displaying circularly polarized luminescence (CPL) has received considerable attention, the corresponding CPL intensity, glum, hardly exceeds 10−2 at the molecular level owing to the difficulty in optimizing the key parameters governing such a luminescence process. To address this challenge, we report here the synthesis and chiroptical properties of a new family of π-helical push–pull systems based on carbo[6]helicene, where the latter acts as either a chiral electron acceptor or a donor unit. This comprehensive experimental and theoretical investigation shows that the magnitude and relative orientation of the electric (μe) and magnetic (μm) dipole transition moments can be tuned efficiently with regard to the molecular chiroptical properties, which results in high glum values, i.e. up to 3–4 × 10−2. Our investigations revealed that the optimized mutual orientation of the electric and magnetic dipoles in the excited state is a crucial parameter to achieve intense helicene-mediated exciton coupling, which is a major contributor to the obtained strong CPL. Finally, top-emission CP-OLEDs were fabricated through vapor deposition, which afforded a promising gEl of around 8 × 10−3. These results bring about further molecular design guidelines to reach high CPL intensity and offer new insights into the development of innovative CP-OLED architectures.

A CPL intensity of up to 3 × 10−2 is achieved in π-extended 6-helicene derivatives, owing to an intense helicene-mediated exciton coupling. Corresponding top-emission CP-OLEDs afforded a promising gEl of around 8 × 10−3.

The design of chiral emitters displaying intense circularly polarized luminescence (CPL) has attracted significant interest, thanks to the potential of CP light in a diverse range of applications going from chiroptoelectronics (organic light-emitting diodes (OLEDs), optical information processing, etc.) to bio-imaging and chiral sensing.1 Recently, designing OLEDs with CP electroluminescence (CP-OLEDs) has emerged as an interesting approach to improve high-resolution display performance. Namely, using unpolarised OLEDs, up to 50% of the emitted light can be lost due to the use of antiglare polarized filters.2 In CP-OLEDs, the electro-generated light can pass these filters with less attenuation owing to its circular polarization and thus lead to an increase of the image brightness with lower power consumption.3 To develop CP-OLED devices, the main approach relies on the doping of the device''s emitting layer by a CPL emitter, which should ensure simultaneously high exciton conversion and a high degree of circular polarization. The harvesting of both singlet and triplet excitons has been successfully addressed using either chiral phosphorescent materials or thermally activated delayed fluorescence (CP-TADF) emitters with device efficiencies of up to 32%.4 However, the intensity of circularly polarized electroluminescence (CPEL), evaluated by the corresponding dissymmetry factor gEl, remains inefficient and typically falls within the range of 10−3 with limited examples reaching gEl > 10−2 based on polymeric materials and lanthanide complexes.5 For CP-OLEDs using a molecular chiral emissive dopant, gEl, defined as the ratio between the intensity difference of left- and right-CPEL, and the total generated electroluminescence, 2(ElL − ElR)/(ElL + ElR), can be generally related to the luminescence dissymmetry factor glum measured in diluted solution.2 Accordingly, it is of crucial importance to design luminescent molecules with high glum values,3,28a–d,29 in order to reach strong CP electro-luminescence when going to practical devices. However, structural and electronic factors that govern the CPL of chiral compounds are still poorly understood even if a few studies have recently tried to rationalize and establish molecular guidelines to obtain high glum values.6Our team has contributed to the research in this area by developing extended π-helical molecular architectures resulting from the association of carbo[6]helicene and achiral dyes,7 which afforded enhanced chiroptical properties, with notably a glum up to 10−2, owing to an uncommon chiral exciton coupling process mediated by the chiral helicenic unit.8 In addition, we also described an unusual solvent effect on the intensity of CPL of π-helical push–pull helicene–naphthalimide derivatives,7b which showed a decrease of glum from 10−2 to 10−3 upon increasing the polarity of solvent.7b This solvatochromism effect was shown to be related to a symmetry breaking of the chiral excited state before emission,9 which modifies the relative intensity of the magnetic (μm) and electric (μe) dipole transition moments, and the angle, θ, between them (Fig. 1), ultimately impacting glum. The latter is well approximated as 4|m|cos θ/(|μ|) for an electric dipole-allowed transition.10Open in a separate windowFig. 1Chemical structures of “push–pull” 2,15-diethynylhexahelicene-based emitters with their polarized luminescence characteristics including their calculated electric and magnetic transition dipole moments and the angle between them corresponding to the S1 → S0 transition.While these results highlight interesting aspects regarding the key parameters influencing the CPL of organic emitters, this type of “helical push–pull design” remains limited to only one example, which render the systematic rationalization of these findings difficult. Accordingly, we decided to develop a complete family of new chiral push–pull compounds to explore the structural and electronic impact of the grafted substituents on the helical π-conjugated system. In addition, we went a step further and incorporated the designed chiral emitter into proof-of-concept CP-OLEDs using a top-emission architecture,11 which remains scarcely explored for CP-light generation despite its considerable potential for micro-display applications. To the best of our knowledge, only one example of such type of electroluminescent device has been reported, using a CP-TADF emitter, affording a modest gEl of 10−3.11aHerein, we report the synthesis and chiroptical properties of a new family of π-helical push–pull systems based on chiral carbo[6]helicene, functionalized by either electron donor or acceptor units. Interestingly, the chiral π-conjugated system of the helicene may act as either an electron acceptor or a donor, depending on the nature of the attached substituents, thereby impacting the chiroptical properties, notably the resulting CPL. By optimizing the chiral exciton coupling process through the modulation of the magnitude and relative orientation of the electric (μ) and magnetic (m) dipoles, the chiroptical properties of classical carbo[6]helicene-based emitters can be dramatically enhanced and reach high glum values at the molecular level, i.e. up to 3–4 × 10−2. Experimental and theoretical investigations revealed that the mutual orientation of the electric and magnetic dipoles in the excited-state is a crucial parameter and is optimal when the substituents attached to the helicene core possess a rather weak electron withdrawing or donating ability. Finally, proof of concept top-emission CP-OLEDs were fabricated through vapor deposition of π-helical push–pull derivatives and afforded a gEl of around 8 × 10−3, which represents a significant improvement for the polarization of electroluminescence emitted using this device architecture.  相似文献   

19.
High quantum yield NIR fluorophores are rare. Factors that drive low emission quantum yields at long wavelength include the facts that radiative rate constants increase proportional to the cube of the emission energy, while nonradiative rate constants increase in an approximately exponentially with decreasing S0–S1 energy gaps (in accordance with the energy gap law). This work demonstrates how the proquinoidal BTD building blocks can be utilized to minimize the extent of excited-state structural relaxation relative to the ground-state conformation in highly conjugated porphyrin oligomers, and shows that 4-ethynylbenzo[c][1,2,5]thiadiazole (E-BTD) units that terminate meso-to-meso ethyne-bridged (porphinato)zinc (PZnn) arrays, and 4,7-diethynylbenzo[c][1,2,5]thiadiazole (E-BTD-E) spacers that are integrated into the backbone of these compositions, elucidate new classes of impressive NIR fluorophores. We report the syntheses, electronic structural properties, and emissive characteristics of neoteric PZn-(BTD-PZn)n, PZn2-(BTD-PZn2)n, and BTD-PZnn-BTD fluorophores. Absolute fluorescence quantum yield (ϕf) measurements, acquired using a calibrated integrating-sphere-based measurement system, demonstrate that these supermolecules display extraordinary ϕf values that range from 10–25% in THF solvent, and between 28–36% in toluene solvent over the 700–900 nm window of the NIR. These studies underscore how the regulation of proquinoidal conjugation motifs can be exploited to drive excited-state dynamical properties important for high quantum yield long-wavelength fluorescence emission.

Incorporation of proquinoidal BTD building blocks into conjugated porphyrin oligomers minimizes the extent of excited-state structural relaxation relative to the ground-state conformation, elucidating new classes of impressive NIR fluorophores.  相似文献   

20.
UV–Vis spectroscopy was used to investigate two new charge transfer (CT) complexes formed between the K+-channel-blocker amifampridine (AMFP) drug and the two π-acceptors 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) and tetracyanoethylene (TCNE) in different solvents. The molecular composition of the new CT complexes was estimated using the continuous variations method and found to be 1:1 for both complexes. The formed CT complexes’ electronic spectra data were further employed for calculating the formation constants (KCT), molar extinction coefficients (εCT), and physical parameters at various temperatures, and the results demonstrated the high stability of both complexes. In addition, sensitive spectrophotometric methods for quantifying AMFP in its pure form were proposed and statistically validated. Furthermore, DFT calculations were used to predict the molecular structures of AMFP–DDQ and AMFP–TCNE complexes in CHCl3. TD-DFT calculations were also used to predict the electronic spectra of both complexes. A CT-based transition band (exp. 399 and 417 nm) for the AMFP–TCNE complex was calculated at 411.5 nm (f = 0.105, HOMO-1 LUMO). The two absorption bands at 459 nm (calc. 426.9 nm, f = 0.054) and 584 nm (calc. 628.1 nm, f = 0.111) of the AMFP–DDQ complex were theoretically assigned to HOMO-1 LUMO and HOMO LUMO excitations, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号