首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the present study the phase diagrams of four (fatty acid + fatty alcohol) binary mixtures composed of caprylic (C8O2) or capric acid (C10O2) + 1-octanol (C8OH) or 1-decanol (C10OH) were obtained by differential scanning calorimetry (DSC). Eutectic and peritectic reactions occurred in the systems. In standard DSC analyses of the (C8O2 + C10OH) and (C10O2 + C8OH) systems, an exothermic transition occurs in association with the melting of a metastable phase. A Stepscan DSC method was used in order to avoid the formation of this metastable phase during the heating of the mixtures. The approach suggested by Slaughter and Doherty (1995) [24] was used for modeling the solid phase, and the Margules 2-suffix, Margules 3-suffix and NRTL models were applied for calculating the activity coefficients of the liquid phase. The best modeling results were obtained using the Margules-3-suffix with an average deviation between experimental and calculated values ranging from T = (0.3 to 0.9) K.  相似文献   

2.
Densities (ρ) and speed of sound (u) of the binary mixtures of 1-octanol and 1-decanol with dodecane and ternary mixture of {1-octanol + tributyl phosphate (TBP) + dodecane} were measured at temperatures from (298.15 to 323.15) K over the entire composition range and at atmospheric pressure. Using these experimentally determined quantities, the excess molar volume (VE), excess isentropic compressibility (κsE) for the binary mixtures and internal pressure (pi) of (alcohol + dodecane) binary mixtures have been calculated. The deviations shown by the excess quantities have been interpreted in terms of intermolecular interactions and structure of components. Using Hildebrand regular solution theory, several other parameters like the enthalpy and entropy of mixing of the binary components have been obtained. From acoustic measurements, the probable dimerization constant of the alcohols has also been determined. The values of these parameters give an indication of the subtle structural changes that occur in these binary mixtures.  相似文献   

3.
Enthalpies of solution of -D-fructose and sucrose in binary solvent mixtures of water and N,N-dimethylformamide (DMF) at 25°C over the whole mole fraction region are reported and compared to those of -D-glucose. Because in these solvent systems the mutarotation of -D-fructose is fast and accompanied by large enthalpy changes, the measured enthalpies of solution of this compound had to be corrected for this effect. The dependences of the enthalpies of solution on the composition of the solvent mixtures are considered to result from preferential hydrogen-bonding of the hydroxyl groups and hydrophobic hydration of the apolar parts of the surface of the solute molecule. Distinctions between the enthalpy of transfer curves are discussed in terms of conformational differences and additivity aspects in the solvation behavior of the compounds. The predominance of furanose forms of fructose in DMF and that of pyranose forms of the same solute in water are related to differences in solvation.  相似文献   

4.
5.
Density and viscosity were determined for binary mixtures of {hyper-branched polymer, Boltorn H2004 (B-H2004) + 1-alcohol (1-butanol, 1-hexanol, and 1-octanol)} at T = (298.15, 308.15, 318.15, 328.15, and 338.15) K and of {B-H2004 + methyl tert-butyl ether (MTBE)} at T = (298.15, 308.15, and 318.15) K and ambient pressure. The temperature dependence of density and viscosity is described by linear regression and by the Vogel–Fucher–Tammann equation, respectively. Excess volumes for the system {B-H2004 + MTBE} are presented as a function of mass fraction. Viscosity deviations were calculated and correlated by the Redlich–Kister polynomial expansions using also the mass fractions. The polynomial correlations describe the variation of viscosity with composition. A qualitative discussion on these quantities in terms of molecular interactions is reported.  相似文献   

6.
Sucrose is the most widely used sweetener in food and pharmaceuticals. Solubility data of this excipient in aqueous cosolvent mixtures is not abundant. Thus, the main objective of this research was to determine and correlate the equilibrium solubility of sucrose in some {cosolvent (1) + water (2)} mixtures at 298.2 K. Cosolvents were ethanol, propylene glycol and glycerol. Shaken flask method was used to determine isothermal solubility. Concentration measurements were performed by means of density determinations. Solubility of sucrose decreases non-linearly with the addition of cosolvent to water. By means of the inverse Kirkwood–Buff method it is shown that sucrose is preferentially solvated by cosolvent in water-rich mixtures but preferentially solvated by water in cosolvent-rich mixtures. Jouyban–Acree model correlates solubility values with the mixtures composition for all cosolvent systems. Moreover, apparent specific volume of sucrose was also calculated from density and compositions.  相似文献   

7.
In this paper, we report experimental densities, dynamic viscosities, and refractive indices and their derived properties of the ternary system (1-butyl-3-methylimidazolium methylsulphate + ethanol + water) at T = 298.15 K and of its binary systems 1-butyl-3-methylimidazolium methylsulphate with ethanol and with water at several temperatures T = (298.15, 313.15, 328.15) K. These physical properties have been measured over the whole composition range and at 0.1 MPa. Excess molar volumes, viscosity deviations, and excess free energy of activation for the binary systems at the abovementioned temperatures, were calculated and fitted to the Redlich–Kister equation to determine the fitting parameters and the root-mean-square deviations and for the ternary systems were calculated and fitted to Cibulka, Singh et al., and Nagata and Sakura equations. The ternary excess properties were predicted from binary contributions using geometrical solution models. Refractive indices were measured from T = 298.15 K over the whole composition range for the binary and ternary systems. The results were used to calculate deviations in the refractive index.  相似文献   

8.
9.
Values of the density and speed of sound were measured for the ternary system (methyl tert-butyl ether + methylbenzene + butan-1-ol) within the temperature range (298.15 to 328.15) K at atmospheric pressure by a vibrating-tube densimeter DSA 5000. Two binary sub-systems were studied and published previously while the binary sub-system (methyl tert-butyl ether + butan-1-ol) is a new study in this work. Excess molar volume, adiabatic compressibility, and isobaric thermal expansivity were calculated from the experimental values of density and speed of sound. The excess quantities were correlated using the Redlich–Kister equation. The experimental excess molar volumes were analyzed by means of both the Extended Real Associated Solution (ERAS) model and the Peng–Robinson equation of state. The novelty of this work is the qualitative prediction of ternary excess molar volumes for the system containing auto-associative compound and two compounds that can hetero-associate. The combination of the ERAS model and Peng–Robinson equation of state could help to qualitatively estimate the real behavior of the studied systems because the experimental results lie between these two predictions.  相似文献   

10.
Isobaric (vapor + liquid) equilibria of three binary systems (1-methoxy-2-propanol + 2-methoxyethanol), (2-butanone + 2-methoxyethanol) and (water + 2-methoxyethanol), was measured using an apparatus with dynamic recirculation and gas chromatography analysis for both phases. The measurements were carried out at pressures of (74.5, 101.3, and 134.0) kPa and temperature ranged from (343 to 407) K. No partial liquid miscibility was observed for any of the systems studied. Azeotropic behavior was verified for the system (water + 2-methoxyethanol) at the water-rich region. Thermodynamic modeling of the data measured was successfully accomplished for (2-butanone + 2-methoxyethanol) and (water + 2-methoxyethanol). In order to represent the no-ideality of the liquid phase, three alternatives for the activity coefficient model were used, Non Random Two Liquid, van Laar and Wilson. Results showed that the relative root mean square deviations from the experimental molar fractions were, <12% for the vapor phase, and <1% for the liquid phase.  相似文献   

11.
New experimental excess molar enthalpy data of the ternary systems (dibutyl ether + 1-propanol + benzene, or toluene), and the corresponding binary systems at T = (298.15 and 313.15) K at atmospheric pressure are reported. A quasi-isothermal flow calorimeter has been used to make the measurements. All the binary and ternary systems show endothermic character at both temperatures. The experimental data for the systems have been fitted using the Redlich–Kister rational equation. Considerations with respect the intermolecular interactions amongst ether, alcohol and hydrocarbon compounds are presented.  相似文献   

12.
Density and viscosity were determined for binary mixtures of {hyperbranched polymer, a fatty acid modified dendritic polymer Boltorn U3000 (B-U3000) + 1-alcohol (1-butanol, 1-hexanol, and 1-octanol)} at T = (298.15, 308.15, 318.15, 328.15, and 338.15) K and of {B-U3000 + tert-butyl-methylether (MTBE)} at T = (298.15, 308.15, and 318.15) K and ambient pressure. The temperature dependence of density and viscosity for these systems can be described by linear regression and by the Vogel–Fucher–Tammann equation, respectively. Excess volumes were discussed in a function of mass fractions. Viscosity deviations were calculated and correlated by the Redlich–Kister polynomial expansions using also the mass fractions. The polynomial correlations describe the variation of viscosity with composition. A qualitative discussion on these quantities in terms of molecular interactions is reported.  相似文献   

13.
Density (ρ) and speed of sound (u) of the binary mixtures of tributyl phosphate (TBP) and alcohols (1-octanol, 1-decanol and isodecanol) were measured at temperatures from T (298.15 to 323.15) K over the entire composition range and at atmosphere pressure. Using these experimentally determined quantities, the excess molar volume (VE), deviation in isentropic compressibility (Δκs), internal pressure (pi), and adjusted correlation coefficients have been calculated. The excess molar volume has been fitted to a Redlich–Kister type polynomial equation. The positive or negative deviations shown by the excess quantities and the trend shown by the adjusted correlation coefficients have been interpreted in terms of intermolecular interactions and structure of components.  相似文献   

14.
15.
A glass dynamic recirculating still was employed for the measurement of isothermal (vapour + liquid) equilibrium (VLE) data for the binary mixtures of diisopropyl ether (DIPE) + alcohol, viz. (DIPE + methanol), (DIPE + ethanol), and (DIPE + 1-butanol) at T = (305.15, 315.15, and 325.15) K, T = (313.15, 323.15, and 333.15) K and T = (318.15, and 338.15) K, respectively. The combined standard uncertainties in the reported system pressures, temperatures and phase compositions are ±0.2 kPa, ±0.1 K and ±0.003, respectively. Maximum pressure azeotropes were observed for all isotherms of the (DIPE + methanol) and (DIPE + ethanol) systems. The experimental results were correlated using both the γϕ and ϕϕ approaches. For the correlation of the VLE data with the γϕ approach, the Wilson, NRTL and UNIQUAC GE models with the truncated two-term virial equation of state (Hayden and O’Connell correlation for second virial coefficient computation) were used. In the ϕϕ correlation approach, the Peng–Robinson equation of state was used with the Wong–Sander mixing rules incorporating the same GE models used in the γϕ approach. Comparisons between the experimental values and predictions using UNIFAC (Dortmund) and the Predictive Soave–Redlich–Kwong (PSRK) model were performed to test the predictive capabilities of these models for the experimental data measured here. The thermodynamic consistency of the experimental data was checked with the Herington area test.  相似文献   

16.
(Solid + liquid) phase diagrams, SLE have been determined for (octan-1-ol, or nonan-1-ol, or decan-1-ol, or undecan-1-ol + benzonitrile) and for (hexylamine, or octylamine, or decylamine, or 1,3-diaminopropane + benzonitrile) using a cryometric dynamic method at atmospheric pressure. Simple eutectic systems with complete immiscibility in the solid phase and complete miscibility on the liquid phase have been observed. The solubility decreases with an increase of the number of carbon atoms in the alkan-1-ol, or amine chain. The temperature of the eutectic points increases and shifts to lower alkan-1-ol, or amine mole fractions as the alkyl chain length of the alkan-1-ol, or amine increases. The higher intermolecular interaction was observed for the (alkan-1-ol + benzonitrile) systems.  相似文献   

17.
The density of seven {(0.0087, 0.0433, 0.1302, 0.2626, 0.4988, 0.7501, and 0.9102) mole fraction of [BMIM][BF4]} binary {methanol (1) + [BMIM][BF4] (2)} (1-butyl-3-methylimidazolium tetrafluoroborate) mixtures has been measured with a vibrating-tube densimeter. Measurements were performed at temperatures from (298 to 398) K and at pressures up to 40 MPa. The total uncertainties of density, temperature, pressure, and concentration measurements was estimated to be less than 0.15 kg · m−3, 15 mK, 5 kPa, and 10−4, respectively. The uncertainties reported in this paper are expanded uncertainties at the 95% confidence level with a coverage factor of k = 2. The effect of temperature, pressure, and concentration on the density and derived volumetric properties such as excess, apparent, and partial molar volumes was studied. The measured densities were used to develop a Tait-type equation of state for the mixture. The structural properties such as direct and total correlation function integrals and cluster size were calculated using the Krichevskii function concept and the equation of state for the mixture at infinite dilution.  相似文献   

18.
In this work, densities ρ, speeds of sound u, and viscosities η, have been measured over the whole composition range for the binary mixtures of diethylene glycol monomethyl ether (DEGMME), CH3(OCH2CH2)2OH with 1-hexanol, CH3(CH2)5OH, 1-octanol, CH3(CH2)7OH, and 1-decanol, CH3(CH2)9OH at T = (293.15, 298.15, 303.15, and 308.15) K along with the properties of the pure components. By using the experimental values of ρ, u, and η, excess molar volume, VmE, deviations in viscosity, Δη, isentropic compressibility κS, deviations in isentropic compressibility ΔκS, deviations of the speed of sound Δu, have been calculated. The viscosity results have also been analysed in terms of some semi-empirical equations.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号