首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
All-carbon quaternary stereocenters are ubiquitous in natural products and significant in drug molecules. However, construction of all-carbon stereocenters is a challenging project due to their congested chemical environment. And, when vicinal all-carbon quaternary stereocenters are present in one molecule, they will dramatically increase its synthetic challenge. A chiral titanium promoted enantioselective photoenolization/Diels–Alder (PEDA) reaction allows largely stereohindered tetra-substituted dienophiles to interact with highly active photoenolized hydroxy-o-quinodimethanes, delivering fused or spiro polycyclic rings bearing vicinal all-carbon quaternary centers in excellent enantiomeric excess through one-step operation. This newly developed enantioselective PEDA reaction will inspire other advances in asymmetric excited-state reactions, and could be used in the total synthesis of structurally related complex natural products or drug-like molecules for drug discovery.

An enantioselective PEDA reaction was developed to enable stereohindered dienophiles to interact with transient photoenolized hydroxy-o-quinodimethanes, delivering fused or spiro polycyclic rings bearing 2–3 vicinal all-carbon quaternary centers in good yield and excellent ee.  相似文献   

2.
The development of a palladium-catalyzed enantioselective decarboxylative allylic alkylation of cyclic siloxyketones to produce enantioenriched silicon-tethered heterocycles is reported. The reaction proceeds smoothly to provide products bearing a quaternary stereocenter in excellent yields (up to 91% yield) with high levels of enantioselectivity (up to 94% ee). We further utilized the unique reactivity of the siloxy functionality to access chiral, highly oxygenated acyclic quaternary building blocks. In addition, we subsequently demonstrated the utility of these compounds through the synthesis of a lactone bearing vicinal quaternary-trisubstituted stereocenters.

The development of a palladium-catalyzed enantioselective decarboxylative allylic alkylation of cyclic siloxyketones to produce enantioenriched silicon-tethered heterocycles is reported.  相似文献   

3.
Catalytic asymmetric variants for functional group transformations based on carbon–carbon bond activation still remain elusive. Herein we present an unprecedented palladium-catalyzed (3 + 2) spiro-annulation merging C(sp2)–C(sp2) σ bond activation and click desymmetrization to form synthetically versatile and value-added oxaspiro products. The operationally straightforward and enantioselective palladium-catalyzed atom-economic annulation process exploits a TADDOL-derived bulky P-ligand bearing a large cavity to control enantioselective spiro-annulation that converts cyclopropenones and cyclic 1,3-diketones into chiral oxaspiro cyclopentenone–lactone scaffolds with good diastereo- and enantio-selectivity. The click-like reaction is a successful methodology with a facile construction of two vicinal carbon quaternary stereocenters and can be used to deliver additional stereocenters during late-state functionalization for the synthesis of highly functionalized or more complex molecules.

An unprecedented palladium-catalyzed (3 + 2) spiro-annulation merging C–C bond activation and desymmetrization was developed for the enantioselective construction of synthetically versatile and value-added oxaspiro products with up to 95% ee.  相似文献   

4.
The first total synthesis of penicimutanin A (1) was achieved within 10 steps (LLS). Key innovations in this synthesis consist of (1) a highly efficient electro-oxidative dearomatization; (2) an unprecedented bisoxirane-directed intermolecular aldol reaction from the sterically hindered face of the ketone and (3) the diastereoselective one-step Meerwein–Eschenmoser–Claisen rearrangement enabling the construction of vicinal quaternary stereocenters. Related family members e.g. penicimutanolone (3) and penicimutatin (5) have also been synthesized alongside, elucidating their absolute configurations, hence the absolute configuration of 1.

The first total synthesis of penicimutanin A (1) was achieved within 10 steps (LLS).  相似文献   

5.
A chiral Lewis acid-catalyzed enantioselective addition of thiols to silyl glyoxylates was developed. The reaction proceeds well with a broad range of thiols and acylsilanes, affording the target tertiary chiral α-silyl–α-sulfydryl alcohols with multi-hetero-atom carbon stereocenters in excellent yields (up to 99%) and enantioselectivities (up to 98% ee). A series of control experiments were conducted to elucidate the reaction mechanism.

Enantioselective addition of thiols to silyl glyoxylates for construction of a multi-hetero-atom substituted carbon stereocenter was described.  相似文献   

6.
A catalytic enantioselective approach to the Myrioneuron alkaloids (−)-myrifabral A and (−)-myrifabral B is described. The synthesis was enabled by a palladium-catalyzed enantioselective allylic alkylation, that generates the C(10) all-carbon quaternary center. A key N-acyl iminium ion cyclization forged the cyclohexane fused tricyclic core, while vinyl boronate cross metathesis and oxidation afforded the lactol ring of (−)-myrifabral A. Adaptation of previously reported conditions allowed for the conversion of (−)-myrifabral A to (−)-myrifabral B.

A catalytic enantioselective approach to the Myrioneuron alkaloids (−)-myrifabral A and (−)-myrifabral B is described.  相似文献   

7.
Quaternary stereocenters are of great importance to the three-dimensionality and enhanced properties of new molecules, but the synthetic challenges in creating quaternary stereocenters greatly hinder their wide use in drug discovery, organic material design, and natural product synthesis. The asymmetric allylic alkylation (AAA) of allylic substrates has proven to be a powerful methodology for enantioselective formation of structure skeletons bearing single or more quaternary carbon centers in modern asymmetric organocatalysis. AAA has certain advantages in constructing the tetrasubstituted stereocenters, including but not limited to mild reactive conditions, effective reaction rates, new functional group introduction, and carbon chains length extension. This review outlines the key considerations in the application of AAA reactions and summarizes the recent progress of AAA reactions in the enantioselective synthesis of products containing quaternary stereocenters. Meanwhile, a detailed discussion of the AAA reactions such as ligands, scope of substrates, transformations and the general reaction mechanisms is also provided. We hope this review could stimulate further advances in much broader areas, including organic synthesis, asymmetric catalysis, C−H activation, and symmetrical pharmaceutical chemistry.  相似文献   

8.
An efficient cooperative chiral Lewis acid/photoredox catalytic system for engaging highly reactive radicals in highly enantioselective conjugate addition to α,β-unsaturated carbonyls is highly desirable. Direct photoexcitation of unbound substrates typically induces undesired background pathways for racemic products and remains a formidable challenge to be addressed in the area of enantioselective photocatalysis. Herein, we report a cooperative catalytic system comprising a chiral Cu(i) complex and an Ir(iii) photocatalyst fueled by visible-light irradiation that allows for seamless integration of the catalytic formation of α-amino alkyl radicals and subsequent enantioselective addition to α,β-unsaturated amides. A 7-aza-6-MeO-indoline attachment on the amide substrates plays a pivotal role in suppressing the undesired pathways, resulting in excellent enantioselectivity and enabling expedited access to valuable γ-aminobutyramides. The indoline amide was readily diversified with full recovery of the azaindoline attachment, highlighting the synthetic utility of this cooperative catalytic system.

An efficient cooperative chiral Lewis acid and photoredox catalytic system towards the highly enantioselective radical conjugate addition of α-amino radicals to α,β-unsaturated amides is developed with the implementation of unique auxiliaries.  相似文献   

9.
Enzyme mimics, especially nanozymes, play a crucial role in replacing natural enzymes for diverse applications related to bioanalysis, therapeutics and other enzyme-like catalysis. Nanozymes are catalytic nanomaterials with enzyme-like properties, which currently face formidable challenges with respect to their intricate structure, properties and mechanism in comparison with enzymes. The latest emergence of single-atom nanozymes (SAzymes) undoubtedly promoted the nanozyme technologies to the atomic level and provided new opportunities to break through their inherent limitations. In this perspective, we discuss key aspects of SAzymes, including the advantages of the single-site structure, and the derived synergetic enhancements of enzyme-like activity, catalytic selectivity and the mechanism, as well as the superiority in biological and catalytic applications, and then highlight challenges that SAzymes face and provide relevant guidelines from our point of view for the rational design and extensive applications of SAzymes, so that SAzyme may achieve its full potential as the next-generation nanozyme.

Single-atom nanozymes with definite active centers, high catalytic activities and enzyme-like selectivities promote the nanozyme research entering a new period of atomic level.  相似文献   

10.
Catalytic enantioselective [2,3]-rearrangements of in situ generated ammonium ylides from glycine pyrazoleamides and allyl bromides were achieved by employing a chiral N,N′-dioxide/MgII complex as the catalyst. This protocol provided a facile and efficient synthesis route to a series of anti-α-amino acid derivatives in good yields with high stereoselectivities. Moreover, a possible catalytic cycle was proposed to illustrate the reaction process and the origin of stereoselectivity.

The Lewis acid catalyzed asymmetric [2,3]-rearrangement of quaternary ammonium ylides formed in situ from glycine pyrazoleamides and allyl bromides.  相似文献   

11.
Efficient combination of two or more reactions into a practically useful purification free sequence is of great significance for the achievement of structural complexity and diversity, and an important approach for the development of new synthetic strategies that are industrially step-economic and environmentally friendly. In this work, a facile and efficient method for the construction of highly functionalized spirocyclo[4.5]decane derivatives containing a synthetically challenging quaternary carbon center has been successfully developed through the realization of a tandem Castro–Stephens coupling/1,3-acyloxy shift/cyclization/semipinacol rearrangement sequence. Thus a series of multi-substituted spirocyclo[4.5]decane and functionalized cyclohexane skeletons with a phenyl-substituted quaternary carbon center have been constructed using this method as illustrated by 24 examples in moderate to good yields. The major advantages of this method over the known strategies are better transformation efficiency (four consecutive transformations in one tandem reaction), product complexity and diversity. As a support of its potential application, a quick construction of the key tetracyclic diterpene skeleton of waihoensene has been achieved.

An efficient construction of spirocyclo[4.5]decane derivatives is developed via a Castro–Stephens coupling/1,3-acyloxy shift/cyclization/semipinacol rearrangement sequence.  相似文献   

12.
A simple chiroptical solution for the absolute stereochemical determination for asymmetric phosphorus V stereocenters is presented. Strong coordination of the phosphorus oxide with the Zn-metallo center of the racemic host Zn-MAPOL 2 leads to an induced axial chirality of the host, yielding a strong ECCD signal. A mnemonic is proposed to correlate the asymmetry of the guest molecule with the observed ECCD signal.

A simple chiroptical solution for the absolute stereochemical determination for asymmetric phosphorus V stereocenters is presented.  相似文献   

13.
The efficient catalytic activation of donor–acceptor aminocyclopropanes lacking the commonly used diester acceptor is reported here in a (3 + 2) dearomative annulation with indoles. Bench-stable tosyl-protected aminocyclopropyl esters were converted into cycloadducts in 46–95% yields and up to 95 : 5 diastereomeric ratio using catalytic amounts of triethylsilyl triflimide. Tricyclic indoline frameworks containing four stereogenic centers including all-carbon quaternary centers were obtained.

A catalytic dearomatization of indoles with D–A aminocyclopropane monoesters for the synthesis of highly substituted indolines.  相似文献   

14.
The combination of photoredox catalysis and enamine catalysis has enabled the development of an enantioselective aerobic oxidative cross-dehydrogenative coupling between glycine derivatives and simple ketones or aldehydes, which provides an efficient approach for the rapid synthesis of enantiopure unnatural α-alkyl α-amino acid derivatives in good yield with excellent diastereo- (up to >99 : 1) and enantioselectivities (up to 97% ee). This process includes the direct photoinduced oxidation of glycine derivatives to an imine intermediate, followed by the asymmetric Mannich-type reaction with an enamine intermediate generated in situ from a ketone or aldehyde and a chiral secondary amine organocatalyst. This mild method allows the direct formation of a C–C bond with simultaneous installation of two new stereocenters without wasteful removal of functional groups.

A visible-light-induced enantioselective aerobic oxidative cross-dehydrogenative coupling between glycine derivatives and simple ketones or aldehydes is achieved.  相似文献   

15.
Nanoparticle (NP) self-assembly has led to the fabrication of an array of functional nanoscale systems, having diverse architectures and functionalities. In this perspective, we discuss the design and application of NP suprastructures (SPs) characterized by nanoconfined compartments in their self-assembled framework, providing an overview about SP synthetic strategies reported to date and the role of their confined nanocavities in applications in several high-end fields. We also set to give our contribution towards the formation of more advanced nanocompartmentalized SPs able to work in dynamic manners, discussing the opportunities of further advances in NP self-assembly and SP research.

This perspective gives an outlook on the design of interparticle confined nanocavities in self-assembled NP systems and their functional relevance.  相似文献   

16.
A chiral N,N′-dioxide/cobalt(ii) complex catalyzed highly diastereoselective and enantioselective tandem aza-Piancatelli rearrangement/intramolecular Diels–Alder reaction has been disclosed. Various valuable hexahydro-2a,5-epoxycyclopenta[cd]isoindoles bearing six contiguous stereocenters have been obtained in good yields with excellent diastereo- and enantio-selectivities from a wide range of both readily available 2-furylcarbinols and N-(furan-2-ylmethyl)anilines.

An asymmetric aza-Piancatelli rearrangement/Diels–Alder cascade reaction between 2-furylcarbinols and N-(furan-2-ylmethyl)anilines was realized by using a chiral N,N′-dioxide/cobalt(ii) complex catalyst.  相似文献   

17.
An enantioselective 1,4-borylstannation of 1,3-enynes employed a chiral sulfoxide phosphine (SOP)/Cu complex as a catalyst, and the desired products, chiral allenylstannes, were first synthesized by asymmetric catalysis with satisfactory yields and enantioselectivies. In this protocol, a catalytic amount of additive, a halogenated salt, plays a crucial role in the success. Control experiments and theoretical studies disclosed that the four-membered ring transmetallation transition states which were stabilized by a halide anion are the key to yields and stereochemical outcomes.

An enantioselective 1,4-borylstannation of 1,3-enynes employed a chiral sulfoxide phosphine (SOP)/Cu complex as a catalyst, and the desired products, chiral allenylstannes, were first synthesized by asymmetric catalysis with satisfactory yields and enantioselectivies.  相似文献   

18.
An unprecedented base-promoted multi-component one-pot dearomatization of N-alkyl activated azaarenes was developed, which enabled the synthesis of complex and diverse bridged cyclic polycycles with multiple stereocenters in a highly regio- and diastereoselective manner. Besides, we realized the step-controlled dearomative bi- and trifunctionalization of quinolinium salts. These transformations not only achieved the maximization of the reaction sites of pyridinium, quinolinium and isoquinolinium salts to enhance structural complexity and diversity, but also opened up a new reaction mode of these N-activated azaarenes. A unique feature of this strategy is the use of easily accessible and bench-stable N-alkyl activated azaarenes to provide maximum reactive sites for dearomative cascade cyclizations. In addition, the salient characteristics including high synthetic efficiency, short reaction time, mild conditions and simple operation made this strategy particularly attractive.

An unprecedented base-promoted multi-component one-pot dearomatization of N-alkyl activated azaarenes was developed to construct complex and diverse bridged cyclic polycycles with multiple stereocenters in a highly regio- and diastereoselective manner.  相似文献   

19.
Non-noble metal nanocrystals with well-defined shapes have been attracting increasingly more attention in the last decade as potential alternatives to noble metals, by virtue of their earth abundance combined with intriguing physical and chemical properties relevant for both fundamental studies and technological applications. Nevertheless, their synthesis is still primitive when compared to noble metals. In this contribution, we focus on third row transition metals Mn, Fe, Co, Ni and Cu that are recently gaining interest because of their catalytic properties. Along with providing an overview on the state-of-the-art, we discuss current synthetic strategies and challenges. Finally, we propose future directions to advance the synthetic development of shape-controlled non-noble metal nanocrystals in the upcoming years.

This minireview describes the state-of-the-art of shape-controlled nanocrystals of third raw transition metals and discusses future directions to advance their synthetic development, which is important for many applications.  相似文献   

20.
Enantioselective additions to oxocarbenium ions are high-value synthetic transformations but have proven challenging to achieve. In particular, the oxa-Pictet–Spengler reaction has only recently been rendered enantioselective. We report experimental and computational studies on the mechanism of this unusual transformation. Herein we reveal that this reaction is hypothesized to proceed through a self-assembled ternary hydrogen bonding complex involving the substrate, chiral phosphate ion, and a urea hydrogen-bond donor. The computed transition state reveals C2-symmetric grooves in the chiral phosphate that are occupied by the urea and substrate. Occupation of one of these grooves by the urea co-catalyst tunes the available reactive volume and enhances the stereoselectivity of the chiral phosphate catalyst.

A new model for the cooperative catalytic oxa-Pictet–Spengler reaction is disclosed. Supporting spectroscopic, kinetic, and computational quantum mechanics studies permit the rationalization of the reaction''s observed enantioselectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号