共查询到20条相似文献,搜索用时 0 毫秒
1.
Andrei Loas Robert J. Radford Alexandria Deliz Liang Stephen J. Lippard 《Chemical science》2015,6(7):4131-4140
We describe a modular, synthetically facile solid-phase approach aimed at separating the fluorescent reporter and binding unit of small-molecule metal-based sensors. The first representatives contain a lysine backbone functionalized with a tetramethylrhodamine fluorophore, and they operate by modulating the oxidation state of a copper ion ligated to an [N4] (cyclam) or an [N2O] (quinoline-phenolate) moiety. We demonstrate the selectivity of their Cu(ii) complexes for sensing nitroxyl (HNO) and thiols (RSH), respectively, and investigate the mechanism responsible for the observed reactivity in each case. The two lysine conjugates are cell permeable in the active, Cu(ii)-bound forms and retain their analyte selectivity intracellularly, even in the presence of interfering species such as nitric oxide, nitrosothiols, and hydrogen sulfide. Moreover, we apply the new probes to discriminate between distinct levels of intracellular HNO and RSH generated upon stimulation of live HeLa cells with ascorbate and hydrogen sulfide, respectively. The successful implementation of the lysine-based sensors to gain insight into biosynthetic pathways validates the method as a versatile tool for producing libraries of analogues with minimal synthetic effort. 相似文献
2.
Dale C. Guenther Grace H. Anderson Saswata Karmakar Brooke A. Anderson Bradley A. Didion Wei Guo John P. Verstegen Patrick J. Hrdlicka 《Chemical science》2015,6(8):5006-5015
Development of probes capable of recognizing specific regions of chromosomal DNA has been a long-standing goal for chemical biologists. Current strategies such as PNA, triplex-forming oligonucleotides, and polyamides are subject to target choice limitations and/or necessitate non-physiological conditions, leaving a need for alternative approaches. Toward this end, we have recently introduced double-stranded oligonucleotide probes that are energetically activated for DNA recognition through modification with +1 interstrand zippers of intercalator-functionalized nucleotide monomers. Herein, probes with different chemistries and architectures – varying in the position, number, and distance between the intercalator zippers – are studied with respect to hybridization energetics and DNA-targeting properties. Experiments with model DNA targets demonstrate that optimized probes enable efficient (C50 < 1 μM), fast (t50 < 3 h), kinetically stable (>24 h), and single nucleotide specific recognition of DNA targets at physiologically relevant ionic strengths. Optimized probes were used in non-denaturing fluorescence in situ hybridization experiments for detection of gender-specific mixed-sequence chromosomal DNA target regions. These probes present themselves as a promising strategy for recognition of chromosomal DNA, which will enable development of new tools for applications in molecular biology, genomic engineering and nanotechnology. 相似文献
3.
The development of near-infrared (NIR) fluorescent probes over the past few decades has changed the way that biomolecules are imaged, and thus represents one of the most rapidly progressing areas of research. Presently, NIR fluorescent probes are routinely used to visualize and understand intracellular activities. The ability to penetrate tissues deeply, reduced photodamage to living organisms, and a high signal-to-noise ratio characterize NIR fluorescent probes as efficient next-generation tools for elucidating various biological events. The coupling of self-labeling protein tags with synthetic fluorescent probes is one of the most promising research areas in chemical biology. Indeed, at present, protein-labeling techniques are not only used to monitor the dynamics and localization of proteins but also play a more diverse role in imaging applications. For instance, one of the dominant technologies employed in the visualization of protein activity and regulation is based on protein tags and their associated NIR fluorescent probes. In this mini-review, we will discuss the development of several NIR fluorescent probes used for various protein-tag systems.This minireview describes the development of NIR chemical probes for various protein-tag systems. 相似文献
4.
Liu Z Koczera P Doleschel D Kiessling F Gätjens J 《Chemical communications (Cambridge, England)》2012,48(42):5142-5144
This research reports the versatile synthetic strategies for hybrid PBCA microbubbles as contrast agents and drug carriers loaded with fluorescent dyes and magnetic nanoparticles serving in vitro cell labelling and in vivo target imaging. These multifunctional probes therefore prove their potential biomedical applications in cancer diagnostics and treatment. 相似文献
5.
Xuanjun Wu Mingzhu Yu Bijuan Lin Hongjie Xing Jiahuai Han Shoufa Han 《Chemical science》2015,6(1):798-803
Agents enabling tumor staging are valuable for cancer surgery. Herein, a targetable sialic acid-armed near-infrared profluorophore (SA-pNIR) is reported for fluorescence guided tumor detection. SA-pNIR consists of a sialic acid entity effective for in vivo tumor targeting and a profluorophore which undergoes lysosomal acidity-triggered fluorogenic isomerization. SA-pNIR displays a number of advantageous biomedical properties in mice, e.g. high tumor-to-normal tissue signal contrast, long-term retention in tumors and low systemic toxicity. In addition, SA-pNIR effectively converts NIR light into cytotoxic heat in cells, suggesting tumor-activatable photothermal therapy. With high performance tumor illumination and lysosome-activatable photothermal properties, SA-pNIR is a promising agent for detection and photothermal ablation of surgically exposed tumors. 相似文献
6.
Fluorescent dyes have become increasingly important in cell biology since they enable high signal-to-noise and selectivity in visualizing subcellular organelles. Photoactivatable dyes allow for tracking and monitoring of a subset of cells or organelles. Here, we report the synthesis and application of a new class of large Stokes shift fluorescent dyes that are water-soluble, cell permeable, non-cytotoxic, and lysosome-specific. Additionally, we demonstrate temporally controlled sequential photoactivation of individual cells in close spatial proximity. 相似文献
7.
Upconversion nanoparticles (UCNPs) are a kind of unique optical material, that are able to emit ultraviolet (UV), visible or near infrared (NIR) luminescence upon NIR light excitation. Because of their excellent physic-chemical characters including enormous anti-Stokes spectral shift, high resistance to photobleaching, fairly long luminescent lifetime, excellent chemical stability, sharp emission band, and deep tissue penetration depth, UCNPs have become a useful tool in bioimaging, biosensing, as well as cancer therapy. In particularly, the emissions light from UCNPs can activate photosensitive molecules, which has the potential to realize the regulation of cell behaviors, including cell growth, adhesion and differentiation. This review consequently introduces the principle and achievements of UCNPs in biomedical field to the general readers for promoting both fundamental research and bio-applications of UCNPs. After the brief introduction of the physical mechanism of upconversion luminescence (UCL), we introduce several strategies to enhance the emissions brightness in detail, then discuss various biomedical applications of UCNPs. 相似文献
8.
William Cullen Simon Turega Christopher A. Hunter Michael D. Ward 《Chemical science》2015,6(5):2790-2794
The protein/ligand docking software GOLD, which was originally developed for drug discovery, has been used in a virtual screen to identify small molecules that bind with extremely high affinities (K ≈ 107 M–1) in the cavity of a cubic coordination cage in water. A scoring function was developed using known guests as a training set and modified by introducing an additional term to take account of loss of guest flexibility on binding. This scoring function was then used in GOLD to successfully identify 15 new guests and accurately predict the binding constants. This approach provides a powerful predictive tool for virtual screening of large compound libraries to identify new guests for synthetic hosts, thereby greatly simplifying and accelerating the process of identifying guests by removing the reliance on experimental trial-and-error. 相似文献
9.
Eliminating the contribution of interfering compounds is a key step in chemical analysis. In complex media, one possible approach is to perform a preliminary separation. However purification is often demanding, long, and costly; it may also considerably alter the properties of interacting components of the mixture (e.g. in a living cell). Hence there is a strong interest for developing separation-free non-invasive analytical protocols. Using photoswitchable probes as labelling and titration contrast agents, we demonstrate that the association of a modulated monochromatic light excitation with a kinetic filtering of the overall observable is much more attractive than constant excitation to read-out the contribution from a target probe under adverse conditions. An extensive theoretical framework enabled us to optimize the out-of-phase concentration first-order response of a photoswitchable probe to modulated illumination by appropriately matching the average light intensity and the radial frequency of the light modulation to the probe dynamics. Thus, we can selectively and quantitatively extract from an overall signal the contribution from a target photoswitchable probe within a mixture of species, photoswitchable or not. This simple titration strategy is more specifically developed in the context of fluorescence imaging, which offers promising perspectives. 相似文献
10.
Aurimas Vy?niauskas Maryam Qurashi Nathaniel Gallop Milan Balaz Harry L. Anderson Marina K. Kuimova 《Chemical science》2015,6(10):5773-5778
Viscosity and temperature variations in the microscopic world are of paramount importance for diffusion and reactions. Consequently, a plethora of fluorescent probes have evolved over the years to enable fluorescent imaging of both parameters in biological cells. However, the simultaneous effect of both temperature and viscosity on the photophysical behavior of fluorophores is rarely considered, yet unavoidable variations in temperature can lead to significant errors in the readout of viscosity and vice versa. Here we examine the effect of temperature on the photophysical behavior of three classes of viscosity-sensitive fluorophores termed ‘molecular rotors’. For each of the fluorophores we decouple the effect of temperature from the effect of viscosity. In the case of the conjugated porphyrin dimer, we demonstrate that, uniquely, simultaneous dual-mode lifetime and intensity measurements of this fluorophore can be used for measuring both viscosity and temperature concurrently. 相似文献
11.
Chaw-Keong Yong Patrick Parkinson Dmitry V. Kondratuk Wei-Hsin Chen Andrew Stannard Alex Summerfield Johannes K. Sprafke Melanie C. O'Sullivan Peter H. Beton Harry L. Anderson Laura M. Herz 《Chemical science》2015,6(1):181-189
Rings of chlorophyll molecules harvest sunlight remarkably efficiently during photosynthesis in purple bacteria. The key to their efficiency lies in their highly delocalized excited states that allow for ultrafast energy migration. Here we show that a family of synthetic nanorings mimic the ultrafast energy transfer and delocalization observed in nature. π-Conjugated nanorings with diameters of up to 10 nm, consisting of up to 24 porphyrin units, are found to exhibit excitation delocalization within the first 200 fs of light absorption. Transitions from the first singlet excited state of the circular nanorings are dipole-forbidden as a result of symmetry constraints, but these selection rules can be lifted through static and dynamic distortions of the rings. The increase in the radiative emission rate in the larger nanorings correlates with an increase in static disorder expected from Monte Carlo simulations. For highly symmetric rings, the radiative rate is found to increase with increasing temperature. Although this type of thermally activated superradiance has been theoretically predicted in circular chromophore arrays, it has not previously been observed in any natural or synthetic systems. As expected, the activation energy for emission increases when a nanoring is fixed in a circular conformation by coordination to a radial template. These nanorings offer extended chromophores with high excitation delocalization that is remarkably stable against thermally induced disorder. Such findings open new opportunities for exploring coherence effects in nanometer molecular rings and for implementing these biomimetic light-harvesters in man-made devices. 相似文献
12.
Hirano T Kikuchi K Urano Y Nagano T 《Journal of the American Chemical Society》2002,124(23):6555-6562
The development and cellular applications of novel fluorescent probes for Zn2+, ZnAF-1F, and ZnAF-2F are described. Fluorescein is used as a fluorophore of ZnAFs, because its excitation and emission wavelengths are in the visible range, which minimizes cell damage and autofluorescence by excitation light. N,N-Bis(2-pyridylmethyl)ethylenediamine, used as an acceptor for Zn2+, is attached directly to the benzoic acid moiety of fluorescein, resulting in very low quantum yields of 0.004 for ZnAF-1F and 0.006 for ZnAF-2F under physiological conditions (pH 7.4) due to the photoinduced electron-transfer mechanism. Upon the addition of Zn2+, the fluorescence intensity is quickly increased up to 69-fold for ZnAF-1F and 60-fold for ZnAF-2F. Apparent dissociation constants (K(d)) are in the nanomolar range, which affords sufficient sensitivity for biological applications. ZnAFs do not fluoresce in the presence of other biologically important cations such as Ca2+ and Mg2+, and are insensitive to change of pH. The complexes with Zn2+ of previously developed ZnAFs, ZnAF-1, and ZnAF-2 decrease in fluorescence intensity below pH 7.0 owing to protonation of the phenolic hydroxyl group of fluorescein, whose pKa value is 6.2. On the other hand, the Zn2+ complexes of ZnAF-1F and ZnAF-2F emit stable fluorescence around neutral and slightly acidic conditions because the pKa values are shifted to 4.9 by substitution of electron-withdrawing fluorine at the ortho position of the phenolic hydroxyl group. For application to living cells, the diacetyl derivative of ZnAF-2F, ZnAF-2F DA, was synthesized. ZnAF-2F DA can permeate through the cell membrane, and is hydrolyzed by esterase in the cytosol to yield ZnAF-2F, which is retained in the cells. Using ZnAF-2F DA, we could measure the changes of intracellular Zn2+ in cultured cells and hippocampal slices. 相似文献
13.
Two fluorescent "off-on" probes YYH1 and YYH2 were used for bioimaging mitochondrial polarity and viscosity. 相似文献
14.
β-Galactosidase (β-gal), a typical hydrolytic enzyme, is a vital biomarker for cell senescence and primary ovarian cancers. Developing precise and rapid methods to monitor β-gal activity is crucial for early cancer diagnoses and biological research. Over the past decade, activatable optical probes have become a powerful tool for real-time tracking and in vivo visualization with high sensitivity and specificity. In this review, we summarize the latest advances in the design of β-gal-activatable probes via spectral characteristics and responsiveness regulation for biological applications, and particularly focus on the molecular design strategy from turn-on mode to ratiometric mode, from aggregation-caused quenching (ACQ) probes to aggregation-induced emission (AIE)-active probes, from near-infrared-I (NIR-I) imaging to NIR-II imaging, and from one-mode to dual-mode of chemo-fluoro-luminescence sensing β-gal activity.This review highlights the molecular design strategy of β-galactosidase-activatable probes from turn-on mode to ratiometric mode, from ACQ to AIE-active probes, from NIR-I to NIR-II imaging and dual-mode of chemo-fluoro-luminescence imaging. 相似文献
15.
Ove Alexander Høgmoen Åstrand Lars Peter Engeset Austdal Ragnhild E. Paulsen Trond Vidar Hansen Pål Rongved 《Tetrahedron》2013
Herein the synthesis and characterization of new, lipophilic highly Zn2+-selective fluorescent probes are reported. High affinity for zinc (Kd 1.1–8.0 nM) over other biologically relevant metals and mixtures of metals was observed. Excitation at 360 nm afforded an emission spectrum with maximum at 530 nm for the zinc bound complex. The linear relationship between fluorescence intensity and zinc concentration indicates that FZnA-probes can be used for quantification. The probes have been synthesized in 28–45% overall yield and the feasibility for further functionalization with biologically relevant side chains has been demonstrated. In vitro studies using PC12 cells and 10 μM of one of the novel probes (FZnA-Ada) visualized endogenous labile Zn2+ after 45 min incubation time. 相似文献
16.
[reaction: see text] The fluorescence emission intensity of the dansyl group is significantly diminished upon appending an ethyldimethylamino group to the N1 nitrogen substituent. Addition of acids and metal ions (i.e., Zn(2+)) to solutions of trimethylethylenediamine naphthalene sulfonamide (trinsyl) 2 produces a >25-fold increase in fluorescence intensity. Trinsyl probe 2 has been used as a diagnostic for the diffusion of protons and metal ions in a network polymer as well as an optical reporter for the glass transition temperature. 相似文献
17.
Torsten Roth Vladislav Vasilenko Callum G. M. Benson Hubert Wadepohl Dominic S. Wright Lutz H. Gade 《Chemical science》2015,6(4):2506-2510
A simple, “click” synthetic approach to a new type of hybrid phosph(III)azane/NHC system is described. The presence of the phosphazane P2N2 ring unit, with P atoms flanking the NCN fragment and with this ring perpendicular to the binding site of the NHC, provides unique opportunities for modifying the electronic and steric character of these carbenes. 相似文献
18.
Water soluble paracyclophane chromophore dimers provide optical reporters that show little sensitivity to surfactants and thus are ideal for biosensor design. Strong intramolecular delocalization circumvents complications from intermolecular delocalization in spontaneously formed aggregates. The synthesis of 2 involves a novel TBAT deprotection/butane sultone ring-opening sequence, which should be general for the preparation of water-soluble conjugated oligomers and polymers. 相似文献
19.
An aqueous molecular tube composed of polyaromatic frameworks with peripheral hydrophilic groups was prepared. The new tube has a well-defined hydrophobic cavity with a diameter of ∼1 nm and quantitatively binds two molecules of fluorescent coumarin dyes in aqueous solutions. The bound coumarin dimers in a stacked fashion exhibit unusual excimer-like emissions in the confined space through efficient host–guest energy transfer. 相似文献
20.
Qingquan Lu Jian Zhang Pan Peng Guanghui Zhang Zhiliang Huang Hong Yi Jeffrey T. Miller Aiwen Lei 《Chemical science》2015,6(8):4851-4854
An unprecedented single electron redox process in copper catalysis is confirmed using operando X-ray absorption and EPR spectroscopies. The oxidation state of the copper species in the interaction between Cu(ii) and a sulfinic acid at room temperature, and the accurate characterization of the formed Cu(i) are clearly shown using operando X-ray absorption and EPR evidence. Further investigation of anion effects on Cu(ii) discloses that bromine ions can dramatically increase the rate of the redox process. Moreover, it is proven that the sulfinic acids are converted into sulfonyl radicals, which can be trapped by 2-arylacrylic acids and various valuable β-keto sulfones are synthesized with good to excellent yields under mild conditions. 相似文献