首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(Solid + liquid) phase equilibria (SLE) and (liquid + liquid) phase equilibria (LLE) for the binary systems: ionic liquid (IL) 1-butyl-3-methylimidazolim tosylate (p-toluenesulfonate) {[BMIM][TOS] + water, an alcohol (ethanol, or 1-butanol, or 1-hexanol, or 1-octanol, or 1-decanol), or n-hexane, or an aromatic hydrocarbons (benzene, or toluene, or ethylbenzene, or propylbenzene, or thiophene)} have been determined at ambient pressure. A dynamic method was used over a broad range of mole fractions and temperatures from (230 to 340) K. For the binary systems containing water, or an alcohol, simple eutectic diagrams were observed with complete miscibility in the liquid phase. As usual, with increasing chain length of the alcohol the solubility decreases. In the case of mixtures {IL + n-hexane, or benzene, or alkylbenzene, or thiophene} the eutectic systems with mutual immiscibility in the liquid phase with an upper critical solution temperature (UCST) were detected. The basic thermal properties of the pure IL, i.e. melting and glass-transition temperatures, as well as the enthalpy of fusion have been measured using a differential scanning microcalorimetry technique (DSC). Density at high temperatures was determined and extrapolated to 298.15 K. Well-known UNIQUAC, Wilson and NRTL equations have been used to correlate experimental SLE data sets for alcohols and water. For the systems containing immiscibility gaps {IL + n-hexane, or benzene, or alkylbenzene, or thiophene}, parameters of the LLE correlation equation have been derived using only the NRTL equation.  相似文献   

2.
In this paper, experimental densities and dynamic viscosities of 1-ethyl-3-methylimidazolium based ionic liquids (ILs) with the anions acetate and dicyanamide are presented in a wide temperature range (298.15 to 343.15 K) at atmospheric pressure. Surface tension of these ILs was measured at T = 298.15 K. The effect of water and/or ethanol compositions on densities and dynamic viscosities of these ILs are studied in binary and ternary mixtures. A quadratic mixing rule was used to correlate binary and ternary liquid densities. The Eyring–Patel–Teja model, which is recommended for polar and aqueous systems, is used to correlate dynamic viscosity data over the whole range of compositions and temperatures in binary and ternary mixtures. Temperature-dependent interaction parameters are introduced here to account for the changes of viscosities with temperature showing good agreements with experimental data.  相似文献   

3.
Quinolinium ionic liquid has been prepared from 1-butylquinolinium bromide as a substrate. The work includes specific basic characterization of synthesized compound by NMR spectra, elementary analysis and water content. The basic thermal properties of the pure IL, i.e. melting and glass-transition temperatures, as well as the enthalpy of fusion have been measured using a differential scanning microcalorimetry technique (DSC). (Solid + liquid) phase equilibria (SLE) and (liquid + liquid) phase equilibria (LLE) for the binary systems: ionic liquid (IL) N-butylquinolinium bis{(trifluoromethyl)sulfonyl}imide, {([BQuin][NTf2]) + aromatic hydrocarbon (benzene, or toluene, or methylbenzene, or propylbenzene, or thiophene), or an alcohol (ethanol, or 1-butanol, or 1-hexanol, or 1-octanol, or 1-dodecanol)} have been determined at ambient pressure. A dynamic method was used over a broad range of mole fractions and temperatures from (260 to 330) K. For the binary systems, the simple eutectic diagrams were observed with immiscibility in the liquid phase with an upper critical solution temperature (UCST). For mixtures with alcohols, it was observed that with increasing chain length of an alcohol the solubility decreases and the UCST increases. In the case of mixture (IL + benzene, or alkylbenzene, or thiophene) the eutectic systems with mutual immiscibility in the liquid phase with very high UCSTs were observed. These points were not detectable with our method and they were observed at low ionic liquid mole fraction. Densities at high temperatures were determined and extrapolated to T = 298.15 K. Well-known UNIQUAC, and NRTL equations have been used to correlate experimental SLE data sets. For the systems containing immiscibility gaps {IL + an alcohol} parameters of the LLE correlation equation have been derived using only the NRTL equation.  相似文献   

4.
In this paper, physical properties of a high purity sample of the ionic liquid 1-propyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [PMim][NTf2], and its binary mixtures with methanol, ethanol, 1-propanol, and 2-propanol were measured at atmospheric pressure. The temperature dependence of density, refractive index and speed of sound (293.15 to 343.15) K and dynamic viscosity (298.15 to 343.15) K were studied at atmospheric pressure by conventional techniques for the pure ionic liquid. For its mixtures with alcohols, density, speed of sound, and refractive index were measured at T = 298.15 K over the whole composition range. The thermal expansion coefficient of the [PMim][NTf2] was calculated from the experimental results using an empirical equation, and values of the excess molar volume, excess refractive index, and excess molar isentropic compressibility for the binary systems at the above mentioned temperature, were calculated and fitted to the Redlich–Kister equation. The heat capacity of the pure ionic liquid at T = 298.15 K was determined using DSC.  相似文献   

5.
The phase diagrams for binary mixtures of an ammonium ionic liquid, didecyldimethylammonium nitrate, [DDA][NO3], with: alcohols (propan-1-ol, butan-1-ol, octan-1-ol, and decan-1-ol): hydrocarbons (toluene, propylbenzene, hexane, and hexadecane) and with water were determined in our laboratory. The phase equilibria were measured by a dynamic method from T = 220 K to either the melting point of the ionic liquid, or to the boiling point of the solvent. A simple liquidus curve in a eutectic system was observed for [DDA][NO3] with: alcohols (propan-1-ol, butan-1-ol, and octan-1-ol); aromatic hydrocarbons (toluene and propylbenzene) and with water. (Solid + liquid) equilibria with immiscibility in the liquid phase were detected with the aliphatic hydrocarbons heptane and hexadecane and with decan-1-ol. (Liquid + liquid) equilibria for the system [DDA][NO3] with hexadecane was observed for the whole mole fraction range of the ionic liquid. The observation of the upper critical solution temperature in binary mixtures of ([DDA][NO3] + decan-1-ol, heptane, or hexadecane) was limited by the boiling temperature of the solvent.Characterisation and purity of the compounds were determined by elemental analysis, water content (Fisher method) and differential scanning microcalorimetry (d.s.c.) analysis. The d.s.c. method of analysis was used to determine melting temperatures and enthalpies of fusion. The thermal stability of the ionic liquid was resolved by the thermogravimetric technique–differential thermal analysis (TG–DTA) technique over a wide temperature range from (200 to 780) K. The thermal decomposition temperature of 50% of the sample was greater than 500 K.The (solid + liquid) phase equilibria, curves were correlated by means of different GEx models utilizing parameters derived from the (solid + liquid) equilibrium. The root-mean-square deviations of the solubility temperatures for all calculated data are dependent upon the particular system and the particular equation used. Comparison of the solubilities of different ammonium salts in alcohols, in hexane, in benzene, and in water are discussed.  相似文献   

6.
The density and surface tension of the pure ionic liquid 1-butyl-3-methyl-imidazolium l-lactate were measured from T (293.15 to 343.15) K. The coefficient of thermal expansion, molecular volume, standard entropy, lattice energy, surface entropy, surface enthalpy, and enthalpy of vaporization were calculated from the experimental values. Density and surface tension were also determined for binary mixtures of {1-butyl-3-methyl-imidazolium l-lactate + water/alcohol (methanol, ethanol, and 1-butanol)} systems over the whole composition range from T (298.15 to 318.15) K at atmospheric pressure. The partial molar volume, excess partial molar volume and apparent molar volume of the component IL and alcohol/water in the binary mixtures were discussed as well as limiting properties at infinite dilution and the thermal expansion coefficients of the four binary mixtures. The surface properties of the four binary mixtures were also discussed.  相似文献   

7.
Water activity measurements by the isopiestic method have been carried out on the aqueous ternary system of {l-serine + 1-(2-carboxyethyl)-3-methylimidazolium chloride[HOOCEMIM][Cl]} ionic liquid and the aqueous binary system of IL at T = 298.15 K and atmospheric pressure. The data obtained were used to calculate the vapor pressure and osmotic coefficient of solution as a function of concentration. The experimental results for the activity of water were accurately correlated with segment-based local composition models of modified NRTL and UNIQUAC. The fitting quality of the above models has been favorably compared with the NRTL and Wilson models. From these data, the corresponding activity coefficients have been calculated. For the same system, the solubility of the l-serine at various [HOOCEMIM][Cl] ionic liquid concentrations was measured at T = 298.15 K using the gravimetric method. A chemical model was employed to describe the dissociation equilibria of all amino acid species with hydrogen ions in water. Moreover, for l-serine, the chemical model indicated that the formation of cations is insignificant in the [HOOCEMIM][Cl] solution. Also the above local composition models were used to predict the solubility of l-serine in aqueous IL solutions. To provide information regarding (solute + solute) interactions, transfer Gibbs free energies (ΔGtr) of amino acid from water to aqueous IL solutions have been determined.  相似文献   

8.
Ternary (liquid + liquid) equilibria for three systems containing ionic liquids {(4-(2-methoxyethyl)-4-methylmorpholinium trifluorotris(perfluoroethyl)phosphate, 1-(2-methoxyethyl)-1-methylpiperidinium trifluorotris(perfluoroethyl)phosphate, 1-(2-methoxyethyl)-1-methylpyrrolidinium trifluorotris(perfluoroethyl)phosphate) + thiophene + heptane} have been determined at T = 298.15 K. All systems showed high solubility of thiophene in the ionic liquid and low solubility of heptane. The solute distribution coefficient and the selectivity were calculated for all systems. High values of selectivity were obtained. The experimental results have been correlated using NRTL model. The influence of ionic liquid structure on phase equilibria is discussed.  相似文献   

9.
《Fluid Phase Equilibria》2002,202(2):289-306
Vapor–liquid phase equilibria in the binary system n-pentane+poly(dimethylsiloxane) (PDMS) have been investigated experimentally at temperatures ranging from 308.15 to 423.15 K. The experiments have been performed at pentane mass fractions in the liquid phase ranging from 0 to 80% using the static method. PDMS with average molecular weights of 26 500 g/mol and 103 000 g/mol has been used. The data are in good agreement with several literature data by other researchers, mostly obtained by the use of inverse gas chromatography. The experimental data could be correlated well using the Flory–Huggins activity coefficient model for the polymer phase and the Peng–Robinson equation of state for the gas phase. Using statistical associating fluid theory (SAFT), it was only possible to reproduce the experimentally determined equilibria after adjusting the pure-component parameters of the polymer to the binary equilibria.Further, experimental data have been obtained for the R22 (difluorochloromethane)+PDMS system at 298.15 and 343.15 K.  相似文献   

10.
The (liquid + liquid) and (solid + liquid) phase equilibria of nine binary mixtures containing fragrance raw materials (FRM) such as aliphatic ketones and compounds based on cyclohexane with water were investigated. The systems {2-heptanone, or 2-nonanone, or 2-undecanone, or 2-tridecanone, or cyclohexyl carboxylic acid (CCA), or cyclohexyl acetic acid (CAA), or 2-cyclohexyl ethanol (2CE) or cyclohexyl acetate (CA), or 2-cyclohexyl ethyl acetate (2CEA) + water (2)} have been measured by a dynamic method in wide range of temperatures from (290 to 360) K and ambient pressure. For all systems immiscibility in the liquid phase was detected. The experimental data was correlated by means of the NRTL equation, utilizing parameters derived from the (liquid + liquid) equilibrium. Additionally, the binary mixtures were predicted with the Mod. UNIFAC (Do) model, with known from literature parameters, with very good results.  相似文献   

11.
(Solid + liquid) and (liquid + liquid) phase equilibria of binary mixtures containing various ionic liquid and erythromycin were studied. The solubility of erythromycin in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, or 1-decyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, or trihexiltertadecilphosphonium chloride, or butyltrimethylammonium bis(trifluoromethylsulfonyl)imide, or methyltrioctylammonium bis(trifluoromethylsulfonyl)imide, or 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide has been measured by a dynamic method, in a wide range of temperatures from (284 to 358) K, at atmospheric pressure. The activity coefficients of erythromycin in ionic liquids were calculated and their comparison with ideal solution was discussed. The experimental data were correlated successfully by means of the semi-empirical Grant equation.  相似文献   

12.
This work presents (vapor + liquid) equilibrium (VLE) of binary mixtures containing methanol or ethanol and three imidazolium based ionic liquids: 1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium acetate, and 1-butyl-3-methylimidazolium hydrogen sulfate. VLE measurements were carried out over the whole range of composition between (283.15 and 298.15) K using a static apparatus. Activity coefficients γi of these solvents in the ionic liquids have been determined from the VLE data and correlated using the NRTL model. The results show that the NRTL model can be applied successfully with systems containing ionic liquids.  相似文献   

13.
(Solid + liquid) equilibria (SLE) prediction are an important phase equilibria property for ionic liquid (IL) mixtures especially when the IL exists as a solid. In this work, the SLE for the binary systems of (IL + thiophene) consisting of the ILs: n-butyl-4-methylpyridinium tosylate [BM4Py][TOS], n-butyl-3-methylpyridinium tosylate [BM3Py][TOS], n-hexyl-3-methylpyridinium tosylate [HM3Py][TOS], and 1,4-dimethylpyridinium tosylate [M1,4Py][TOS] are predicted using the quantum chemical based COSMO-RS (COnductor like Screening MOdel for Real Solvents) model. Initially, benchmarking studies are performed on binary mixtures which are known beforehand. The values of the predicted solubility are then compared with the experimental results by calculating the root mean square error (RMSE). The SLE predictions of the solubility of pyrene and dibenzothiophene in five different solvents were carried out giving an average RMSE of 4%. Further the applicability of COSMO-RS to binary systems consisting of (ionic liquid + alcohol) mixtures and (ionic liquid + hydrocarbons) are predicted. The ionic liquids concerned are n-butyl-3-methylpyridinium tosylate [BM3Py][TOS] while the alcohols and hydrocarbons are 1-butanol, 1-hexanol, 1-octanol, 1-decanol, and benzene, toluene, ethylbenzene, n-propylbenzene respectively. The experimental data for the ionic liquid [BM4Py][TOS] with thiophene gave the smallest deviation of 10.2%. The overall RMSE for IL–thiophene, IL–alcohol, and IL–hydrocarbons were 15%, 17.2% and 12.9% respectively. Thus the predicted solubility values were found to be in reasonable agreement with the experimental values.  相似文献   

14.
In present research the binary solutions containing ionic liquid (IL), 1-ethyl-3-methylimidazolium dimethylphosphate ([EMIM] [DMP]), are considered as new working pairs for absorption heat pumps or absorption refrigerators. The IL was synthesized in the lab and mixed with water, ethanol, or methanol. Experimental (vapor + liquid) equilibrium (VLE) of these binary systems was measured at different mole fractions ranging from 0.1 to 0.5 and was correlated by the NRTL equation within the average relative deviation of 2%, which means that the (vapor + liquid) equilibrium of these binary solutions containing ionic liquid can be predicted by traditional non-electrolyte solution model. Meanwhile these binary solutions are a negative deviation from Raoult’s law. Excess enthalpy of these binary systems was measured at the temperature of T = 298.15 K and at the pressure of 1 atm. The results indicate that the mixing processes of [EMIM] [DMP] with water, ethanol, or methanol are exothermal, which is a very important characteristic for working pairs used in absorption heat pumps or in absorption refrigerators.  相似文献   

15.
This research has been focused on a study of the ionic liquid (IL) Ammoeng 102 (tetraalkyl ammonium sulfate) as solvent in liquid–liquid extraction. Experimental densities, speeds of sound, and refractive indices of Ammoeng 102 were studied in dependence on temperature at atmospheric pressure, both by conventional techniques. The thermal expansion coefficient of the IL was calculated from the density. Experimental (liquid + liquid) equilibria data (LLE) were obtained for mixtures of (Ammoeng 102 + heptane) from T = (293.15 to 343.15) K and (heptane + toluene + Ammoeng 102) at T = 298.15 K and atmospheric pressure. The experimental results for the binary and ternary systems were well correlated with the NRTL model. Selectivity and distribution ratio values, derived from the tie-line data, were presented. A comparison with other ILs and with sulfolane is included in order to analyze the best separation solvent in a liquid extraction process.  相似文献   

16.
The new quinolinium ionic liquid has been synthesised as a continuation of our work with quinolinium-based ionic liquids (ILs). The work includes specific basic characterisation of synthesized compounds: N-hexylquinolinium bromide, [HQuin][Br] and N-hexylquinolinium bis{(trifluoromethyl)sulfonyl}imide [HQuin][NTf2] by NMR spectra, elementary analysis and water content. The basic thermal properties of the pure [HQuin][NTf2] i.e. melting and glass-transition temperatures, the enthalpy of fusion as well as heat capacity have been measured using a differential scanning microcalorimetry technique (DSC) and thermal analysis instrument (TA). Densities and viscosities were determined as a function of temperature. Phase equilibria for the binary systems: {[HQuin][NTf2]) + aromatic hydrocarbon (benzene, or toluene, or ethylbenzene, or n-propylbenzene), or an alcohol (1-butanol, or 1-hexanol, or 1-octanol, or 1-decanol)} have been determined at ambient pressure. A dynamic method was used over a broad range of mole fractions and temperatures from (270 to 320) K. For all the binary systems with benzene and alkylbenzenes, the eutectic diagrams were observed with immiscibility gap in the liquid phase beginning from (0.13 to 0.28) mole fraction of the IL with very high an upper critical solution temperature (UCST). For mixtures with alcohols, the complete miscibility was observed for 1-butanol and immiscibility with UCST in the liquid phase for the remaining alcohols. The typical dependence was observed, that with increasing chain length of an alcohol the solubility decreases. The well-known NRTL equation was used to correlate experimental (solid + liquid), SLE and (liquid + liquid), LLE phase equilibria data sets. For the systems containing immiscibility gaps, (IL + an alcohol) parameters of the LLE correlation were used to the prediction of SLE.  相似文献   

17.
(Liquid + liquid) equilibria and tie-lines for the ternary (water + ethanol + α-pinene, or β-pinene or limonene) and quaternary (water + ethanol + α-pinene + limonene) mixtures have been measured at T = 298.15 K. The experimental multicomponent (liquid + liquid) equilibrium data have been successfully represented in terms of the modified UNIQUAC model with binary parameters.  相似文献   

18.
In this work, the separation of benzene from aliphatic hydrocarbons (hexane, or heptane) is investigated by extraction with 1-ethyl-3-methylpyridinium ethylsulphate ionic liquid, [EMpy][ESO4]. (Liquid + liquid) equilibria (LLE) data are determined for the ternary systems: {hexane (1) + benzene (2) + [EMpy][ESO4] (3)} at T = (283.15, 293.15, 298.15, and 303.15) K and {heptane (1) + benzene (2) + [EMpy][ESO4] (3)} at T = (283.15 and 298.15) K and atmospheric pressure. The selectivity and distribution coefficient, derived from the tie line data, were used to determine whether the ionic liquid is a good solvent for the extraction of aromatic from aliphatic compounds. The consistency of the tie line data was ascertained by applying the Othmer–Tobias and Hand equations. The experimental results for the ternary systems were well correlated with the NRTL equation. A study of the temperature effect and the influence of the chain length of the alkanes were realized. The results obtained were compared with other ionic liquids. There are no literature data for the mixtures discussed in this paper.  相似文献   

19.
《Fluid Phase Equilibria》2006,239(1):52-62
The high-pressure phase equilibria of binary mixtures, hydrogen-ammonia and nitrogen-ammonia, have been analyzed. A combined Chemical Association + Redlich–Kwong Equation of State (A + RKEOS) approach is adopted to represent gas-phase non-idealities while the liquid phase non-idealities are modeled using the NRTL equations. The proposed approach gave better representation as compared to other modified Redlich–Kwong Equations of State. The new approach was satisfactorily used to predict the phase equilibria of the ternary system of hydrogen–nitrogen–ammonia.  相似文献   

20.
The density and surface tension for pure ionic liquid N-octyl-pyridinium nitrate were measured from (293.15 to 328.15) K. The coefficient of thermal expansion, molecular volume, standard entropies, and lattice energy were calculated from the experimental density values. The critical temperature, surface entropy, surface enthalpy, and enthalpy of vaporization were also studied from the experimental surface tension results. Density and surface tension were also determined for binary mixtures of (N-octyl-pyridinium nitrate + alcohol) (methanol, ethanol, and 1-butanol) systems over the whole composition range at 298.15 K and atmospheric pressure. Excess molar volumes and surface tension deviations for the binary systems have been calculated and were fitted to a Redlich–Kister equation to determine the fitting parameters and the root mean square deviations. The partial molar volume, excess partial molar volume, and apparent molar volume of the component IL and alcohol in the binary mixtures were also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号