首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel electrogenerated chemiluminescence (ECL) sensor based on natural clay and ionic liquid was fabricated. Tris(2,2′‐bipyridine)ruthenium(II) (Ru(bpy)32+) was immobilized on natural clay surface through simple adsorption. An ECL sensor was prepared by mixing Ru(bpy)32+‐incorporated clay, graphite powder and an ionic liquid (1‐butyl‐3‐methylimidazolium hexafluorophosphate) as the binder. The electrochemical behavior and ECL of the immobilized Ru(bpy)32+ was investigated. It was observed that the ECL of immobilized Ru(bpy)32+ was activated by the ionic liquid. The proposed ECL sensor showed high sensitivity to tri‐n‐propylamine (TPrA) and the detection limit was found to be 20 pM. In addition, the ECL sensor displayed good stability for TPrA detection and long‐term storage stability.  相似文献   

2.
A flow injection (FI)–electrochemiluminescent (ECL) method has been developed for the determination of gallic acid, based on an inhibition effect on the Ru(bpy)32+/tri-n-propylamine (TPrA) ECL system in pH 8.0 phosphate buffer solution. The method is simple and convenient with a determination limit of 9.0×10–9 mol/L and a dynamic concentration range of 2×10–8–2×10–5 mol/L. The relative standard deviation (RSD) was 1.0% for 1.0×10–6 mol/L gallic acid (n=11). It was successfully applied to the determination of gallic acid in Chinese proprietary medicine—Jianming Yanhou Pian. The inhibition mechanism proposed for the quenching effect of the gallic acid on the Ru(bpy)32+/TPrA ECL system was the interaction of electrogenerated Ru(bpy)32+* and o-benzoquinone derivative at the electrode surface. The ECL emission spectra and UV-visible absorption spectra were applied to confirm the mechanism.  相似文献   

3.
《Electroanalysis》2005,17(7):589-598
The effect of 30 phenols and anilines on typical Ru complex electrochemiluminescence (ECL) was systematically investigated under different conditions. It was found that all the tested compounds showed an ECL inhibiting signal. The magnitude of ECL inhibition was related to the position of the substituting group in the benzene ring and decreased in the following order: meta‐>ortho‐>para‐. The oxidation potential of the tested compounds, the ECL spectra and UV‐visible absorption spectra of Ru(bpy) /tripropylamine (TPrA) in the presence of phenols and anilines, and the direct ECL between Ru(bpy) and phenols/aniline were studied. The mechanism of ECL inhibition has been proposed due to energy transfer from the excited state Ru(bpy) to a quinone or ketone or their polymer formed by electro‐oxidation of phenols and anilines. The potential of analytical application was explored by use of the inhibited ECL. The results demonstrate that numerous compounds are detectable with the detection limits in the range of 10?8–10?9 mol/L for Ru(bpy) /TPrA system and in the range of 10?6–10?7 mol/L for Ru(bpy) /C2O system, respectively.  相似文献   

4.
Qiu B  Xue L  Wu Y  Lin Z  Guo L  Chen G 《Talanta》2011,85(1):339-344
Inhibited Ru(bpy)32+ electrochemiluminescence by inorganic oxidants is investigated. Results showed that a number of inorganic oxidants can quench the ECL of Ru(bpy)32+/tri-n-propylamine (TPrA) system, and the logarithm of the decrease in ECL intensity (ΔI) was proportional to the logarithm of analyte concentrations. Based on which, a sensitive approach for detection of these inorganic oxidants was established, e.g. the log-log plots of ΔI versus the concentration of MnO4, Cr2O72− and Fe(CN)63− are linear in the range of 1 × 10−7 to 3 × 10−4 M for MnO4 and Cr2O72−, and 1 × 10−7 to 1 × 10−4 M for Fe(CN)63−, with the limit of detection (LOD) of 8.0 × 10−8 M, 2 × 10−8 M, and 1 × 10−8 M, respectively. A series of experiments such as a comparison of the inhibitory effect of different compounds on Ru(bpy)32+/TPrA ECL, ECL emission spectra, UV-Vis absorption spectra etc. were investigated in order to discover how these inorganic analytes quench the ECL of Ru(bpy)32+/TPrA system. A mechanism based on consumption of TPrA intermediate (TPrA·) by inorganic oxidants was proposed.  相似文献   

5.
Electrochemiluminescence(ECL) is a powerful transduction technique used in biosensing and in vitro diagnosis, while the mechanism of ECL generation is complicated and affected by various factors. Herein the effect of ionic strength on ECL generation by the classical tris(2,2'-bipyridyl)ruthenium(II)[Ru(bpy)32+]/tri-n-propylamine(TPrA) system was investigated. It is clear that the ECL intensity decreases significantly with the increase of ionic strength, most likely arising from the reduced deprotonation rate of TPrA+·. We further combined microtube electrode(MTE) with ECL microscopy to unravel the evolution of ECL layer with the variation of ionic strength. At a low concentration of Ru(bpy)32+, the thickness of ECL layer(TEL) nearly kept unchanged with the ionic strength, indicating the surface-confined ECL generation is dominated by the oxidative-reduction route. While at a high concentration of Ru(bpy)32+, ECL generation is dominated by the catalytic route and TEL increases remarkably with the increase of ionic strength, because of the extended diffusion length of Ru(bpy)33+ at a reduced concentration of TPrA·.  相似文献   

6.
Highly efficient electrogenerated chemiluminescence (ECL) of natural chlorophyll a (Chl a) was observed in acetonitrile with 1-butyl-3-methylimidazolium hexafluorophosphate as electrolyte and tri-n-propylamine (TPrA) as a coreactant. The collected ECL spectrum displayed a maximum emission peak at ca. 670 nm, suggesting that the same excited states with the photo-excitation processes were generated. The possible ECL reaction mechanism of this Chl a–TPrA system was discussed and established. ECL intensity of Chl a was proportional to its concentration over the range of 0.1–11 μM, and a high ECL efficiency (Φecl) of 0.86 was calculated using Ru(bpy)32 + as the standard (Φecl = 1). Herein, an important property of natural Chl a was expanded and a new kind of ECL luminophores was developed. Moreover, it is expected that this high ECL efficiency of natural porphyrin complex has great potential to expand its ECL sensing application.  相似文献   

7.
Phenolic compounds such as vanillic and p-coumaric acids are pollutants of major concern in the agro-industrial processing, thereby their effective detection in the industrial environment is essential to reduce exposure. Herein, we present the quenching effect of these compounds on the electrochemiluminescence (ECL) of the Ru(bpy)32+/TPrA (TPrA=tri-n-propylamine) system at a disposable screen-printed carbon electrode. Transient ECL profiles are obtained from multiple video frames following 1.2 V application by a smartphone-based ECL sensor. A wide range of detection was achieved using the sensor with limit of detection of 0.26 μM and 0.68 μM for vanillic and p-coumaric acids, respectively. The estimated quenching constants determined that the quenching efficiency of vanillic acid is at least two-fold that of p-coumaric acid under the current detection conditions. The present ECL quenching approach provided an effective method to detect phenolic compounds using a low-cost, portable smartphone-based ECL sensor.  相似文献   

8.
The exceptional nature of WO3−x dots has inspired widespread interest, but it is still a significant challenge to synthesize high-quality WO3−x dots without using unstable reactants, expensive equipment, and complex synthetic processes. Herein, the synthesis of ligand-free WO3−x dots is reported that are highly dispersible and rich in oxygen vacancies by a simple but straightforward exfoliation of bulk WS2 and a mild follow-up chemical conversion. Surprisingly, the WO3−x dots emerged as co-reactants for the electrochemiluminescence (ECL) of Ru(bpy)32+ with a comparable ECL efficiency to the well-known Ru(bpy)32+/tripropylamine (TPrA) system. Moreover, compared to TPrA, whose toxicity remains a critical issue of concern, the WO3−x dots were ca. 300-fold less toxic. The potency of WO3−x dots was further explored in the detection of circulating tumor cells (CTCs) with the most competitive limit of detection so far.  相似文献   

9.
A novel electrogenerated chemiluminescence (ECL) sensor based on Ru(bpy)32+‐doped titania (RuDT) nanoparticles dispersed in a perfluorosulfonated ionomer (Nafion) on a glassy carbon electrode (GCE) was developed in this paper. The electroactive component‐Ru(bpy)32+ was entrapped within the titania nanoparticles by the inverse microemulsion polymerization process that produced spherical sensors in the size region of 38±3 nm. The RuDT nanoparticles were characterized by electrochemical, transmission electron and scanning microscopy technology. The Ru(bpy)32+ encapsulation interior of the titania nanoparticles maintains its ECL efficiency and also reduces Ru(bpy)32+ leaching from the titania matrix when immersed in water due to the electrostatic interaction. This is the first attempt to prepare the RuDT nanoparticles and extend the application of electroactive component‐doped nanoparticles into the field of ECL. Since a large amount of Ru(bpy)32+ was immobilized three‐dimensionally on the electrode, the Ru(bpy)32+ ECL signal could be enhanced greatly, which finally resulted in the increased sensitivity. The ECL analytical performance of this ECL sensor for tripropylamine (TPA) was investigated in detail. This sensor shows a detection limit of 1 nmol/L for TPA. Furthermore, the present ECL sensor displays outstanding long‐term stability.  相似文献   

10.
The classic and most widely used co-reactant electrochemiluminescence (ECL) reaction of tris(2,2′-bipyridine)ruthenium(ii) ([Ru(bpy)3]2+) and tri-n-propylamine is enhanced by an order of magnitude by fac-[Ir(sppy)3]3− (where sppy = 5′-sulfo-2-phenylpyridinato-C2,N), through a novel ‘redox mediator’ pathway. Moreover, the concomitant green emission of [Ir(sppy)3]3−* enables internal standardisation of the co-reactant ECL of [Ru(bpy)3]2+. This can be applied using a digital camera as the photodetector by exploiting the ratio of R and B values of the RGB colour data, providing superior sensitivity and precision for the development of low-cost, portable ECL-based analytical devices.

A water-soluble Ir(iii) complex is shown to enhance the ‘remote’ mechanism of the most widely used co-reactant ECL reaction of tris(2,2′-bipyridine)ruthenium(ii) with tripropylamine.  相似文献   

11.
We report the integration of surface plasmon resonance (SPR), cyclic voltammetry and electrochemiluminescence (ECL) responses to survey the interfacial adsorption and energy transfer processes involved in ECL on a plasmonic substrate. It was observed that a Tween 80/tripropylamine nonionic layer formed on the gold electrode of the SPR sensor, while enhancing the ECL emission process, affects the electron transfer process to the luminophore, Ru(bpy)32+, which in turn has an impact on the plasmon resonance. Concomitantly, the surface plasmon modulated the ECL intensity, which decreased by about 40 %, due to an interaction between the excited state of Ru(bpy)32+ and the plasmon. This occurred only when the plasmon was excited, demonstrating that the optically excited surface plasmon leads to lower plasmon‐mediated luminescence and that the plasmon interacts with the excited state of Ru(bpy)32+ within a very thin layer.  相似文献   

12.
The exceptional nature of WO3?x dots has inspired widespread interest, but it is still a significant challenge to synthesize high‐quality WO3?x dots without using unstable reactants, expensive equipment, and complex synthetic processes. Herein, the synthesis of ligand‐free WO3?x dots is reported that are highly dispersible and rich in oxygen vacancies by a simple but straightforward exfoliation of bulk WS2 and a mild follow‐up chemical conversion. Surprisingly, the WO3?x dots emerged as co‐reactants for the electrochemiluminescence (ECL) of Ru(bpy)32+ with a comparable ECL efficiency to the well‐known Ru(bpy)32+/tripropylamine (TPrA) system. Moreover, compared to TPrA, whose toxicity remains a critical issue of concern, the WO3?x dots were ca. 300‐fold less toxic. The potency of WO3?x dots was further explored in the detection of circulating tumor cells (CTCs) with the most competitive limit of detection so far.  相似文献   

13.
《Electroanalysis》2004,16(17):1401-1405
The immobilization of tris(2,2′‐bipyridyl)ruthenium(II), Ru(bpy)32+, at a glassy carbon electrode was achieved by entrapping the Ru(bpy)32+ in a vapor deposited titania sol‐gel membrane. The electrogenerated chemiluminescence (ECL) of the immobilized Ru(bpy)32+ was studied. The Ru(bpy)32+ modified electrode showed a fast ECL response to both oxalate and proline. The ECL intensity was linearly related to concentrations of oxalate and proline over the ranges from 20 to 700 μmol L?1 and 20 to 600 μmol L?1, respectively. The detection limits for oxalate and proline at 3σ were 5.0 μmol L?1 and 4.0 μmol L?1, respectively. This electrode possessed good precision and stability for oxalate and proline determinations. The electrogenerated chemiluminescence mechanism of proline system was discussed. This work provided a new way for the immobilization of Ru(bpy)32+ and the application of titania sol‐gel membrane in electrogenerated chemiluminescence.  相似文献   

14.
Electrochemiluminescence (ECL) of tris(2,2′‐bipyridine)ruthenium, Ru(bpy)32+ in the presence of various co‐reactants, such as tripropylamine (TPA), oxalate ion (C2O42?), ascorbic acid (H2A) and dehydroascorbic acid (DHA), were investigated under ultrasound irradiation. In sono‐ECL experiments, an indium‐thin‐oxide (ITO) was used as working electrode, and a titanium tipped sonic horn probe (diameter 2 mm) which operated at a frequency of 20 kHz was set in the front of the ITO electrode. Under the ultrasound irradiation, ECL signals were found to be significantly enhanced when TPA and C2O42? were used as co‐reactants, only slightly enhanced in Ru(bpy)32+/DHA system, but total quenched in Ru(bpy)32+/H2A system. The difference of Ru(bpy)32+ ECL behaviors for various co‐reactant could to be due to the different kinetics of catalytic reactions associated in ECL schemes. ECL quenching effect observed in Ru(bpy)32+/H2A system was suggested to be due to electron transfer (ET) route between the excited state *Ru(bpy)32+ and ascorbate anion HA? diffused from the bulk solution, where the diffusional HA? species served as electron donor. The effect becomes more pronounced upon sonication because the effective collision frequency between *Ru(bpy)32+ and HA? would be significantly increased by the enhanced mass transport effect of ultrasound.  相似文献   

15.
Baiqing Yuan  Tianyan You 《Talanta》2009,79(3):730-1309
A novel tris(2,2′-bipyridine)ruthenium(II) (Ru(bpy)32+) cathodic electrochemiluminescence (ECL) was generated at −0.78 V at the Pt electrode in acetonitrile (ACN), which suggested that the cathodic ECL differed from conventional cathodic ECL. It was found that tripropylamine (TPrA) could enhance this cathodic ECL and the linear range (log-log plot) was 0.2 μM-0.2 mM. In addition, hydrogen peroxide (H2O2) could inhibit the cathodic ECL and was indirectly detected with the linear range of 27-540 μM. The RSD (n = 12) of the ECL intensity in the presence of 135 μM H2O2 was 0.87%. This method was also demonstrated for the fast determination of H2O2 in disinfectant sample and satisfactory results were obtained.  相似文献   

16.
Herein, we report for the first time single Au38 nanocluster reaction events of highly efficient electrochemiluminescence (ECL) with tri-n-propylamine radicals as a reductive co-reactant at the surface of an ultramicroelectrode (UME). The statistical analyses of individual reactions confirm stochastic single ones influenced by the applied potential.

Herein, we report for the first time single Au38 nanocluster reaction events of highly efficient electrochemiluminescence (ECL) with tri-n-propylamine radicals as a reductive co-reactant at the surface of a Pt ultramicroelectrode (UME).

Single entity measurements have been introduced by Bard and Wightman based on the collisions/reactions of individual nanoparticles and molecules at an ultramicroelectrode (UME).1–9 Since then, the field of single entity electrochemistry has gradually attracted several research groups and has become a frontier field of nanoelectrochemistry and electroanalytical chemistry.8,10–14 For instance, it has been shown that the chemistry of the electrode surface plays an important role in the collision/reaction events and the kinetics of reaction processes.15–21 Dasari et al. reported that hydrazine oxidation and proton reduction can be detected using single Pt nanoparticles on the surface of a mercury or bismuth modified Pt UME, and the material of the electrode was found to affect the shape of current–time transients.22,23 Fast scan cyclic voltammetry provides better chemical information about transient electrode–nanoparticle interactions, which is otherwise difficult to obtain with constant-potential techniques.24 There are only a few reports on photoelectrochemical systems including semiconductor nanoparticles designed to detect single nanoparticles in the course of photocatalysis processes.25–28 More importantly, owing to the nature of stochastic processes of single entity reactions, statistical analyses have shown substantial influences on the understanding of the underlying processes.Electrochemiluminescence or electrogenerated chemiluminescence (ECL),29 as a background-free technique,30–32 was also utilized to detect individual chemical reactions and single Pt nanoparticle collisions based on the reaction between the Ru(bpy)32+ complex and tri-n-propylamine (TPrA) radicals on the surface of an ITO electrode.2,33,34 It was found that the size of the nanoparticles, the origin of the interaction between particles and the electrode surface, the concentration of species generation, and the lifetime of individual electrogenerated nanocluster species (i.e., Au382+, Au383+, and Au384+) in conjunction with the reactivity of those oxidized species with co-reactant radical intermediates (i.e., TPrA radical) play crucial roles in the frequency of the ECL reaction events leading to individual ECL responses. More strikingly, a higher ECL reaction frequency is directly proportional to the amount of collected ECL light.21 Chen and co-workers also employed ECL to study stationary single gold-platinum nanoparticle reactivity on the surface of an ITO electrode.35 Lin and co-workers monitored the hydrogen evolution reaction in the course of “ON” and “OFF” ECL signals.36 Recently, we performed a systematic and mechanistic ECL study of a series of gold nanoclusters, with the general formula of Aun(SC2H4Ph)mz (n = 25, 38, 144, m = 18, 24, 60 and z = −1, 0, +1), where near-infrared (NIR) ECL emission was observed.37 There are several enhancement factors, such as catalytic loops38,39 that improve the signal to noise ratio. The Wightman group was able to report single ECL reactions based on the capability of ECL.7 Furthermore, thus far, we have explored ECL mechanisms and reported the ECL efficiency of five different gold nanoclusters i.e., Au25(SR)181−, Au25(SR)180, Au25(SR)181+, Au38(SR)240 and Au144(SR)600, among which the Au38(SR)240/TPrA system revealed outstanding ECL efficiency, ca. 3.5 times higher than that of Ru(bpy)32+/TPrA as a gold standard. Therefore, we decided to focus on the Au38 (SR)240/TPrA system. It was discovered that the ECL emission of these nanomaterials can be tuned through varying the applied potential and local concentration of the desired co-reactant.Herein, for the first time we report on ECL via a single Au38(SC2H4Ph)24 nanocluster (hereafter denoted as Au38 NC) reaction (eq. (1)) in the vicinity of an UME in the presence of TPrA radicals as a reductive co-reactant.1where x is the oxidation number that can be either 0, 1, 2, 3 or 4. Single ECL spikes (Fig. 1A) along with ECL spectroscopy were used for elucidating individual reaction events. Indeed, each single ECL spike demonstrates a single Au38(x−1)* reaction product. Au38 NCs were synthesized according to procedures reported by us and others, and fully characterized using UV-Visible-NIR, photoluminescence, 1HNMR spectroscopy and MALDI mass spectrometry to confirm the Au38 nanocluster synthesis (details are provided in ESI, Sections 1–3, Fig. S1–S4).38,40,41Fig. 2 (left) shows a differential pulse voltammogram (DPV) in an anodic scan of a 2 mm Pt disc electrode immersed in 0.1 mM Au38 acetonitrile/benzene solution containing 0.1 M TBAPF6 as the supporting electrolyte. There are five discrete electrochemical peaks at which Au380 was oxidized to Au38+ (E°′ = 0.39 V), Au382+ (E°′ = 0.60 V), and Au383+/4+ (E°′ = 0.99 V) and reduced to Au38 (E°′ = −0.76 V) and Au382− (E°′ = −1.01 V).38,40,41Open in a separate windowFig. 1(A) An example of the reaction event transient of 10 μM Au38 in benzene/acetonitrile (1 : 1) containing 0.1 M TBAPF6 in the presence of 20 mM TPrA at 0.9 V vs. SCE, acquired at 15 ms time intervals using a 10 μm Pt UME. The white dashed-line indicates the threshold to identify single ECL spikes. (B) Illustration of a single nanocluster ECL spike. (C) ECL instrumentation with an inset showing ECL spike generation in the vicinity of the Pt UME.Open in a separate windowFig. 2Anodic DPV for Au38 (left), reaction energy diagram of Au382+ and TPrA· (middle) along with the ECL–voltage curve (right) in an anodic potential scan at a 2 mm Pt disk electrode immersed in a solution of 10 μM Au38 with 20 mM TPrA.The rich electrochemistry of Au38 NCs is well-matched with that of co-reactants such as TPrA to generate near infrared-ECL (NIR-ECL), and the ECL emission efficiency of the Au38/TPrA system is 3.5 times larger than that of the Ru(bpy)32+/TPrA co-reactant ECL system.27Thus, it is of utmost interest to investigate the ECL generation of the above co-reactant system in single reactions, which improves the ECL signal detection sensitivity. To perform the ECL experiment a solution of 10 μM Au38 NC with 20 mM TPrA was prepared. We first confirmed the ECL light generation of such solution along with its blank solution containing only TPrA using a typical 2 mm diameter Pt disk electrode (Fig. 2, S5 and S6).A 10 μm Pt UME electrode, which is electrochemically inert (Fig. S7), was utilized to investigate the ECL of single NC reactions under potentiostatic conditions, at which a specific positive bias potential was applied to oxidize both Au38 and TPrA. Fig. 1A shows a typical ECL–time transient current curve (ECL intensity versus time) at 0.90 V vs. SCE, which was acquired using a photomultiplier tube (PMT, R928) for a duration of 1800 s at data acquisition time intervals of 15 ms (Fig. 1C and ESI, Section 3). Fig. 1B represents an exemplary event of a single ECL spike with a sharp increase followed by a decay in the ECL intensity. It is observed from the many spikes in Fig. 1B that this process can reoccur with a high probability in the vicinity of the UME, probably due to an electrocatalytic reaction loop (Fig. 1C). Indeed, ECL intensity was enhanced in this way as an already relaxed species, i.e., Au38z+1*, participates in an oxidation step to regenerate Au38z+1 to react with the TPrA radical (TPrA˙).Once photons resulting from the excited state relaxation in the vicinity of the UME are captured by the PMT, individual reaction events can be observed (Fig. 1A with the instrumentation schematic shown in Fig. 1C). As shown in Fig. 3A, there are many ECL spikes during 1800 s of measurement, each of which represents an individual ECL generation reaction in the vicinity of the UME surface. It is worth noting that there are several spikes with various intensities. This is most likely due to the Brownian motion which is random movement due to the diffusion of individual nanocluster species such as Au380, Au381+, Au382+, etc., electrogenerated at the local applied potentials. Long and co-workers42 proposed that silver nanoparticle collision on the surface of a gold electrode follows Brownian motion, leading to several types of surface-nanoparticle response peak shapes. In fact, the observed ECL spikes, shown in Fig. 1C, with a rise and an exponential decay suggested that Au38 nanocluster species diffuse directly through the electrode double-layer, move towards the tunneling region of the electrode surface, collide42 and become oxidized, react with TPrA radicals thereafter to produce excited states, and emit ECL. It is worth emphasizing that this path could be partially different for each individual nanocluster owing to the angle and direction relative to the electrode surface. The single Au38 NC reaction behaviour at various bias potentials was investigated following the electrochemical energy diagram shown in Fig. 2, middle. For example, at a bias potential of 0.70 V (the green spot on the DPV in Fig. 2), Au380 undergoes two successive oxidation reactions to Au382+ and TPrA oxidation and deprotonation start to generate TPrA·. In fact, at a very close oxidation potential to Au382+, TPrA is also oxidized to its corresponding cation radical (ca. 0.80 V vs. SCE) Fig. S6, followed by deprotonation to form the TPrA radical.38 The TPrA· with a very high reduction power (E°′ = −1.7 eV)43 injects one electron to the LUMO orbital of the nanocluster and forms excited state Au38+*, as illustrated in the reaction energy diagram in Fig. 2, middle.38 Then, Au38+* emits ECL light while relaxing to the ground state. For another instance, at 1.10 V vs. SCE (the red spot on the DPV in Fig. 2), Au380 is oxidized to Au383/4+ feasibly. At this potential, the TPrA radical is generated massively in the vicinity of the electrode. The efficient electron transfer between the TPrA radical and Au383/4+ generates both Au382+* and Au383+* that emit light at the same wavelength of 930 nm.38 The results of such interactions produced a transient composed of many ECL events (Fig. 3A), which is an indication of bias potential enforcement on the nanocluster light emission.Open in a separate windowFig. 3Single-nanocluster ECL photoelectron spectroscopy of Au38. ECL–time transients (A), statistics of the number of photons (B), histogram of the single reaction time between sequential spikes (C) and accumulated ECL spectrum (D) for a 10 μm Pt UME at 1.1 V immersed in a 10 μM Au38 nanocluster solution in benzene/acetonitrile (1 : 1) containing 0.1 M TBAPF6 in the presence of 20 mM TPrA. (E)–(H) The counterpart plots to (A)–(D) for the UME biased at 0.7 V. # represents the number.We further tried to collect the current–time traces of such events; however, owing to the high background current originating from the high concentration of TPrA relative to that of the nanocluster, no noticeable spikes in the current were observed.In order to study the photochemistry and understand deeply the single nanocluster reactions, ECL–time transients were collected at different applied potentials (i.e., 0.7, 0.8, 0.9 and 1.1 V vs. SCE) as labelled in green, brown, purple, and red on the DPV in Fig. 2, respectively. The transients were further analysed using our home-written MATLAB algorithm adapted from that for nanopore electrochemistry.44 The population of individual events was identified by applying an appropriate threshold to discriminate ECL spikes from the noise as demonstrated in Fig. 1A. In fact, the applied algorithm also assisted us to learn about the raising time and intensity of each spike, as well as photons of individual spikes. For instance, Fig. 3A shows another typical transit for 1800 s at an UME potential bias of 1.1 V for the ECL events. Indeed, the integrated area of each peak, the charge of the photoelectrons at the PMT, is directly proportional to the number of photons emitted from individual reactions (see ESI, Section 5). Basically, the PMT amplifies the collected single photon emitted in the course of light-to-photoelectron conversion (see ESI, Section 6 and Fig. S8) and translates a single photon into photoelectrons. The extracted charge of each ECL reaction, QECL, was then converted to the corresponding number of photons by dividing by the gain factor, g, which is 1.55 × 106 (Fig. S8), following eqn (2):2The histograms of the number of photons show a Gaussian distribution (Fig. 3B) with a reaction frequency of 53.5 ± 2.9 at E = 1.1 V, whereas at a lower potential of 0.7 V the reaction frequency drops to 18.5 ± 1.7 (Fig. 3F). This indicates that there is a three-fold lower reaction occurrence at the lower potential. The integration of the Gaussian fitting at 1.1 V and 0.7 V also reveals a three-fold drop from 3.3 × 105 to 1.2 × 105 photons over 1800 s.To further explore the effect of electrode potential bias on the single Au38 NCs ECL reaction, potentials lower than 1.1 and higher than 0.7 V, ca. 0.8 and 0.9 V (brown and purple labels in Fig. 2), were applied. In fact, the resulting ECL–time transients show a lower population of single spikes (Fig. S12A and ESI,). The integrated Gaussian curve values support the ECL–time transient observations with ∼4.1 × 104 and ∼6.5 × 104 photons, respectively. In fact, it is unlikely that the PMT would get more than two events in the duration, owing to the following reasons: (i) it has been shown that only 5.5% of incoming photons can be effectively converted to photoelectron signals by our R928 PMT during our absolute efficiency calibration, ESI Section 6 and Fig. S8–S19;45 (ii) spherical ECL emission is proven to be detected for a substantial small part upon examination of our detection system for the absolute ECL quantum efficiency;45 (iii) Au38 nanocluster ECL emissions occur at 930 nm, which is almost at the wavelength detection limit of our PMT response curve.38,45In addition, we evaluated the stochastic (a series of random events at various probability distributions) nature of the observed events and extracted the reaction time interval (τ) at various potentials. The resulting graph shows an exponential decay (Fig. 3C) as expressed in eqn (3):3where frequency (λ) gives the mean rate of the event and A represents the fitting amplitude. One can expect to obtain the distribution of the number of emitted photons and spatial brightness function. In fact, the exponential decay is a clear indication of random single reaction events as Whiteman and co-workers described for a 9,10-diphenylanthracene (DPA) ECL system in the annihilation pathway.7,46 At a potential of 1.1 V, λ and A are found to be 4.98 ± 0.02 ms−1 and 80.4 ± 3.2, whereas at 0.7 V, λ and A turned out to be 32.9 ± 1.6 ms−1 and 9.5 ± 0.1 (Fig. 3C and G). Indeed, the lower potential of 0.70 V vs. SCE is high enough to generate the TPrA radical along with Au382+, thereby leading to excited Au38+*, Fig. 3E. One can conclude that at the applied potentials of 0.7 V and 1.1 V, Au380 is oxidized to Au382+ and Au384+, resulting in the generation of Au38+* and Au383+* under static conditions. Thus, there are higher populations of ECL spikes with no discrepancy in the number of collected photon distributions. However, at two intermediate potentials, i.e., 0.8 and 0.9 V, a dynamic behaviour which is due to the mixed oxidation of Au38 species, in the vicinity of the UME, is observed. In fact, at these two applied potentials, the local concentration of the corresponding gold nanoclusters (i.e., Au383+ and Au384+) is not sufficient to produce significant ECL spikes. We also attempted to collect the ECL spectrum using a charge-coupled device (CCD) camera, which is relatively more sensitive in the NIR region (e.g., λ > 900 nm, Fig. S16). Fig. 3D and H display an accumulated spectrum at 1.1 and 0.7 V vs. SCE, which is collected for 30 minutes. The fitted accumulated ECL spectrum indicates an ECL peak emission at 930 nm and supports higher reactivity at 1.1 V than that at 0.7 V.38 To confirm that the observed ECL spikes and accumulated spectra are generated based on the oxidation of Au38 nanoclusters in the presence of TPrA radicals, ECL–time transients were recorded upon holding an applied potential at which no faradaic process occurs. Fig. S11 represents ECL–time curves and accumulated ECL spectra at 0.0 V and 0.4 V. One can notice that no appreciable ECL signal can be observed.In addition, we investigate the Pearson cross-correlation (ρ) between the intensities of ECL spikes with τ as shown in Fig. S14 in which there is a positive correlation at 0.7 and 1.0 V and a negative correlation at 0.8 and 0.9 V. In fact, ρ evaluates whether there is a stationary random process between the two defined parameters (see ESI, Section 6). Interestingly, the frequency of the reaction at different applied potentials revealed decay from 0.7 to 0.8 V, followed by an upward trend to 0.9 and 1.1 V vs. SCE (Fig. S15). This could be additional support for the transition stage at 0.8 and 0.9 V, where the applied potential as the major driving force to generate oxidized forms (e.g., Au383+ and Au384+) governs the flux of the nanocluster species that reach the vicinity of the electrode. Furthermore, the effectiveness of electron transfer reaction kinetics between the radical species, i.e., Au38z+1 and TPrA radical, competes with the flow of the incoming nanoclusters. It is worth mentioning that each of the ECL single event experiments was repeated three times, and very similar results were obtained. Moreover, lower (5 μM) and higher (20 μM) concentrations of Au38 in the presence of 20 mM were tested. In fact, the former shows a smaller number of single reactions; however the later revealed a larger number of multiple reactions (Fig. S13).In summary, in this communication we demonstrated that Au38 NC ECL at the single reaction level can be monitored using a simple photoelectrochemical setup following a straightforward protocol. Indeed, we have rich basic knowledge about the ECL mechanisms of various gold nanoclusters with different charge states (Au25(SR)181+, Au25(SR)180, Au25(SR)181−) and various sizes (Au25(SR)180, Au38(SR)240, Au144(SR)600) in fine detail. Thus, the ECL emission mechanisms of gold clusters, including the contribution of each charge state and influence of various concentrations of co-reactants, are well known. For instance, in our previous studies38,39,47–49 we clearly identified three charge states of an Au25(SR)181−/TPrA system and we discovered that at a high concentration of TPrA the reduction in the bulk solution of gold nanoclusters influences the ECL emission wavelength. We also have learnt that the Au38/TPrA system is a co-reactant independent of co-reactant concentration. Furthermore, an extensively higher concentration of TPrA provides a dominant reaction over any unknown decomposition reaction at higher oxidation states of Au38. It was discovered that the population of ECL reactions is directly governed by the applied bias potential on a Pt UME. This work is a strong indication of the high sensitivity of the ECL technique in detecting single ECL reactions in a simple solution, which complements those reported by the Bard group using rubrene, for instance, embedded in an organic emulsion in the presence of TPrA or oxalate as a co-reactant.50,51 These systems needed a substantial ECL enhancement in the presence of an ionic liquid as the supporting electrolyte and emulsifier. The current approach can be further extended to investigate other molecules and nanomaterials'' electrocatalytic processes at the single reaction level.  相似文献   

17.
Tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) has been successfully immobilized onto electrode through the electrodeposition of Ru(bpy)32+/AuNPs/chitosan composite film. In the experiments, chitosan solution was first mixed with Au nanoparticles (AuNPs) and Ru(bpy)32+. Then, during chronopotentiometry experiments in this mixed solution, a porous 3D network structured film containing Ru(bpy)32+, AuNPs and chitosan has been electrodeposited onto cathode due to the deposition of chitosan when pH value is over its pKa (6.3). The applied current density is crucial to the film thickness and the amount of the entrapped Ru(bpy)32+. Additionally, these doping Ru(bpy)32+ in the composite film maintained their intrinsic electrochemical and electrochemiluminescence activities. Consequently, this Ru(bpy)32+/AuNPs/chitosan modified electrode has been used in ECL to detect tripropylamine, and the detection limit was 5 × 10−10 M.  相似文献   

18.
陶颖  李梅金  章丽燕  陈曦 《化学学报》2006,64(18):1885-1888
在玻碳电极上, 联吡啶钌[Ru(bpy)32+]于+1.50 V (vs. Ag/AgCl)左右被氧化为Ru(bpy)33+, 该氧化态离子与碱性水溶液中(pH 8.2)的OH•反应生成激发态的[Ru(bpy)32+*]而发光. 研究比较了15种金属离子对Ru(bpy)32+碱性水溶液电致化学发光的影响, 并对这些影响进行了初步的解释.  相似文献   

19.
An electrochemiluminescence (ECL) sensor based on Ru(bpy)32+-graphene-Nafion composite film was developed. The graphene sheet was produced by chemical conversion of graphite, and was characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), and Raman spectroscopy. The introduction of conductive graphene into Nafion not only greatly facilitates the electron transfer of Ru(bpy)32+, but also dramatically improves the long-term stability of the sensor by inhibiting the migration of Ru(bpy)32+ into the electrochemically inactive hydrophobic region of Nafion. The ECL sensor gives a good linear range over 1 × 10−7 to 1 × 10−4 M with a detection limit of 50 nM towards the determination of tripropylamine (TPA), comparable to that obtained by Nafion-CNT. The ECL sensor keeps over 80% and 85% activity towards 0.1 mM TPA after being stored in air and in 0.1 M pH 7.5 phosphate buffer solution (PBS) for a month, respectively. The long-term stability of the modified electrode is better than electrodes modified with Nafion, Nafion-silica, Nafion-titania, or sol-gel films containing Ru(bpy)32+. Furthermore, the ECL sensor was successfully applied to the selective and sensitive determination of oxalate in urine samples.  相似文献   

20.
Catalysis is central to contemporary synthetic chemistry. There has been a recent recognition that the rates of photochemical reactions can be profoundly impacted by the use of Lewis acid catalysts and co-catalysts. Herein, we show that Brønsted acids can also modulate the reactivity of excited-state organic reactions. Brønsted acids dramatically increase the rate of Ru(bpy)32+-sensitized [2 + 2] photocycloadditions between C-cinnamoyl imidazoles and a range of electron-rich alkene reaction partners. A combination of experimental and computational studies supports a mechanism in which the Brønsted acid co-catalyst accelerates triplet energy transfer from the excited-state [Ru*(bpy)3]2+ chromophore to the Brønsted acid activated C-cinnamoyl imidazole. Computational evidence further suggests the importance of driving force as well as geometrical reorganization, in which the protonation of the imidazole decreases the reorganization penalty during the energy transfer event.

Brønsted acids can catalyze triplet energy transfer reactions, and DFT computations suggest the unexpected importance of reorganization energy for catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号