首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
采用基于密度泛函理论(DFT)的第一性原理平面波赝势法(PWP)计算Mn掺杂GaN(Ga1-xMnN)晶体的电子结构及光学性质,详细讨论掺杂后电子结构的变化.计算表明,Mn掺杂GaN使得Mn 3d与N 2p轨道杂化,产生自旋极化杂质带,Ga1-xMnxN表现为半金属性,非常适于自旋注入,说明该种材料是实现自旋电子器件的理想材料.另结合实验结果分析掺杂后体系的光学性质,发现吸收谱在1.3 eV处出现吸收峰,吸收系数随Mn2+浓度增加而增大.分析表明,该峰是源于Mn2+离子e态与t2态间的带内跃迁.  相似文献   

2.
光催化分解水制H2和光催化还原CO2是解决能源危机和全球变暖的有效途径.但是,由于粉末光催化剂存在回收效率低的问题,因而光催化成本很高.而磁性光催化剂便于回收和重复利用,因此人们把目光转向具有磁性的非光催化剂材料,试图通过改性使得磁性材料具有合适的水分解或者还原CO2的氧化还原电位.同时,对具有光催化活性但是没有磁性的材料进行磁化改性可以得到新型的磁性光催化剂.本文通过对本身具有磁性的NiO材料进行Cu掺杂能带调整,使调整后的NiO具有合适的氧化还原电位;对本身具有良好光催化氧化还原电位的CuO材料进行Ni掺杂磁化调整,使磁化后的CuO既有良好的氧化还原电位又有磁性.最终两种材料经过掺杂变成磁性光催化材料,既有较好的光催化性能,又可高效回收,因此有望在光催化领域具有潜在的应用前景.LSDA(局域自旋密度近似)+U(有效库仑相关能)计算方法能够很好地给出磁矩和禁带宽度等电子结构性质.本文通过LSDA+U计算方法对具有磁性的宽禁带半导体材料NiO进行电子结构改性研究,希望通过降低其禁带宽度、调整其氧化还原电位使之对太阳光有响应.因其同时具有磁性便于回收,使得光催化分解水制H2和光催化还原CO2成本高的问题得到解决.对NiO的磁胞进行了Cu掺杂计算,结果发现Cu的掺杂几乎没有引起NiO空间结构的变化,这是因为Cu和Ni的离子半径相近.通过对电子结构的计算发现掺杂体系的禁带变窄,并且在禁带中间出现了两条杂质能级,该杂质能级是由掺杂原子Cu 3d态组成.杂质能级的出现能够降低光生载流子在带隙中的复合,从而提高光催化效率.计算结果同时表明,Cu掺杂的NiO系统具有一个1μB的净磁矩,即Cu的掺杂使得NiO显示出磁性,而Ni的磁矩在掺杂前后几乎保持不变,由纯相的1.67μB增加到掺杂体系中的1.70μB.由于CuO本身低指数(111)面和(011)面具有合适的分解水制H2和还原CO2的氧化还原电位,如果对CuO进行磁化改性,可以使光催化剂CuO同时带有磁性,便于回收再利用.本文对CuO磁胞进行了Ni的掺杂计算.结果表明,由于离子半径相近,Ni掺杂几乎没有引起CuO空间结构的变化.掺杂后的体系具有一个1.66μB的净磁矩,同时Ni的掺杂引起多个杂质能级出现,靠近价带的杂质能级由Cu 3d态组成,而在导带底位置出现的杂质能级主要由Ni 3d态组成.整个能带向高能级方向平移.  相似文献   

3.
采用基于赝势平面波基组的密度泛函理论方法,研究具有黄铜矿结构的CuAlX2(X=S,Se,Te)晶体的电子结构,并预测了它们的线性和非线性光学性质.结果表明:这些化合物具有相似的能带结构,带隙随X原子从S→Se→Te依次减小.三种晶体的静态介电常数、静态折射率和静态倍频系数d36的变化情况与带隙的变化相反,随着X原子自S→Se→Te改变依次递增,但静态双折射率依次递减.该系列化合物的倍频效应主要来源于价带顶附近的占据能带向以Al和X原子的p电子态为主要成分的空带之间的跃迁.在三种晶体中,CuAlTe2除静态双折射率偏小外,其它光学性能要优于CuAlS2和CuAlSe2.  相似文献   

4.
采用平面波超软赝势方法研究了二维单层MoSi2X4 (X=N, P, As)的稳定性、电子结构和光学性质. 研究结果显示, 基于单层MoSi2N4的两种同分异构体M1和M2所构建的六种晶体结构具有较好的动力学稳定性. 通过能带和有效质量的计算, 单层MoSi2N4在MoSi2X4 (X=N, P, As)六种晶体结构中显示出最宽的间接带隙和最高的载流子迁移率. 随后带边电位的计算结果表明, 单层MoSi2N4带边势分别为M1: –0.368、1.416 V, M2: –0.227、1.837 V, 其结果相较于MoSi2P4和MoSi2As4导带边电位更负, 价带边电位更正, 是六种晶体结构中最适合用作光催化剂的材料. 同时, 光吸收谱的计算结果显示, 单层MoSi2N4的光学吸收表现出明显的各向异性, 在可见光和紫外光波段内具有较强的光吸收能力, 说明其在可见光催化领域有着潜在的应用前景. 这些结果为进一步深入研究二维单层MoSi2N4在光催化水解领域的应用提供了理论指导.  相似文献   

5.
采用基于密度泛函理论的第一性原理平面波超软赝势计算方法,研究了In、Sc p型掺杂对SrTiO_3母体化合物稳定性、电子结构和光学性质的影响.计算结果表明:掺杂后,SrIn_(0.125)Ti_(0.875)O_3和SrSc_(0.125)Ti_(0.875)O_3的稳定性降低,体系显示p型简并半导体特征,掺杂仅引起杂质原子近邻区域的几何结构发生变化.同时,SrIn_(0.125)Ti_(0.875)O_3和SrSc_(0.125)Ti_(0.875)O_3体系的光学带隙分别展寬0.35、0.30 eV,光学吸收边发生蓝移,在1.25.2.00 eV的能量区间出现新的吸收峰,该吸收峰与体系Drude型自由载流子的激发相关.此外,SrIn_(0.125)Ti_(0.875)O_3和SrSc_(0.125)Ti_(0.875)O_3体系的可见光透过率有了明显的提高,在350-625 nm波长范围透过率高于85%.掺杂原子在费米能级处低的电子态密度限制了跃迁概率和光吸收.大的禁带宽度、小的跃迁概率和弱的光吸收是SrIn_(0.125)Ti_(0.875)O_3和SrSc_(0.125)Ti_(0.875)O_3体系具有较高光学透明度的原因.  相似文献   

6.
基于密度泛函理论(DFT)的第一性原理平面波超软赝势方法,计算了纯MgF2晶体、Co掺杂MgF2晶体、P掺杂MgF2晶体和(Co,P)双掺杂MgF2晶体的电子结构和光学特性.结果表明,掺杂后的MgF2晶体发生了畸变,原子之间的键长也有所变化.(Co,P)双掺杂后,由于非金属原子p态和金属原子d态之间的轨道杂化,在MgF...  相似文献   

7.
采用基于赝势平面波基组的密度泛函理论方法, 对一系列具有黄铜矿结构的AgGa(S1-xSex)2固溶体的构型、电子结构、线性和二阶非线性光学性质进行了系统研究. 结果表明, 各固溶体具有类似的能带结构, 体系带隙随x值增加而逐渐减小. 当所引入的Hartree-Fock交换项贡献为22.56%时, 对应的杂化PBE泛函得到的带隙值与实验结果相近. 固溶体的各种光学性质, 包括折射率、双折射率、反射率、吸收系数和二阶倍频系数等均随着组成的改变呈现出有规律的变化趋势, 变化范围介于AgGaS2和AgGaSe2二者之间. 因此, 利用固溶体光学性质的变化规律, 可从中寻找出具有特定光学性能的晶体材料.  相似文献   

8.
采用基于密度泛函理论的平面波超软赝势方法对ZnO0.875的电子结构和光学性质进行了计算. 用第一性原理对含氧空位的ZnO晶体进行了结构优化处理, 计算了完整的和含氧空位的ZnO晶体的电子态密度. 结合精确计算的电子态密度分析了带间跃迁占主导地位的ZnO0.875 材料的介电函数、吸收系数、折射系数、湮灭系数和反射系数, 并对光学性质和极化之间的联系做了详细讨论. 结果表明ZnO0.875晶体是单轴晶体, 并且在低能区域存在因氧缺陷而造成的一些特性. 我们的研究结果为ZnO的发光特性提供新的视野, 同时为ZnO的光电子材料的设计和应用提供理论基础.  相似文献   

9.
采用第一性原理赝势平面波方法, 在局域密度近似(LDA)和广义梯度近似(GGA)下分别计算了BaTiO3立方相和四方相的电子结构, 并在局域密度近似下计算了BaTiO3立方相的光学性质. 结果表明, BaTiO3立方相和四方相都为间接带隙, 方向分别为Γ-M和Γ-X, 大小分别为2.02和2.20 eV. 对BaTiO3和PbTiO3铁电相短键上电子布居数的对比分析, 给出了它们铁电性大小的差别. 且在30 eV的能量范围内研究了BaTiO3 的介电函数、吸收系数、折射系数、湮灭系数、反射系数和能量损失系数等光学性质,并基于电子能带结构对光学性质进行了解释. 计算结果与实验数据相符合.  相似文献   

10.
应用基于密度泛函理论的第一性原理研究方法,考虑广义梯度近似(GGA)下的交换关联势,模拟计算了高压下纤维锌矿(WZ)、闪锌矿(ZB)和岩盐(RS)结构氧化铍(BeO)晶体的电子结构和光学性质等.计算结果表明,随着压力的增加,同种结构下原子间的键长和电荷转移有所减小,并且价带和导带分别向低能和高能方向移动,禁带展宽.与常压下的BeO相比,随着压力的增加,三种结构的BeO晶体的光学性质有一定的变化,介电函数、吸收系数、折射率以及电子能量损失谱曲线出现更多的精细结构,峰的数量增多;各高压相结构的吸收谱和能量损失谱宽度逐次展宽;吸收系数曲线的吸收峰及其位于低能区域的吸收边以及电子能量损失谱峰的位置均发生一定程度的蓝移.  相似文献   

11.
采用密度泛函理论(DFT)中的广义梯度近似(GGA)方法对C56X10(X=F,Cl,Br,I)的结构稳定性和电子性质进行了计算研究.结构稳定性计算表明:对于C56X10(X=F,Cl,Br,I),能隙、反应热、最大振动频率和最小振动频率都随着X原子序数的增加而减小,表明C56X10(X=F,Cl,Br,I)的稳定性随着X原子序数的增加而逐渐降低,其中C56F10最为稳定.前人在实验上已成功合成出C56Cl10,因此,我们推测C56F10有望在实验上成功合成.前线轨道计算发现,C56相邻的五边形公共顶点以及两个六边形-五边形-六边形公共顶点是笼子中化学活性最强的部位,有利于卤族元素的外部吸附.此外,计算结果还显示,C56X10(X=F,Cl,Br,I)的电负性随着X原子序数的增大而逐渐减弱,C—X基团的电负性因位置的不同而不同.  相似文献   

12.
采用基于密度泛函理论(DFT)框架下广义梯度近似(GGA)平面波超软赝势(PP-PW)方法, 计算了闪锌矿型MTe (M=Zn/Mg)的几何结构、弹性性质、电子结构和光学性质. 同时采用杂化密度泛函调准了带隙. 结果表明, 立方相ZnTe和MgTe均为直接带隙半导体材料. 所得晶格参数、弹性常数及体模量与实验数据基本吻合. 由弹性常数推导出ZnTe、MgTe的德拜温度分别为758、585 K. 研究了MTe的复介电函数、折射率、反射率和能量损失系数等光学性质, 并基于电子能带结构和态密度对光学性质进行了解释.  相似文献   

13.
采用MP2/def2-TZVP理论方法考察了ZH3,ZH+4及ZH4X(Z=N,P,As,Sb,Bi,X=F, Cl, Br, I)的结构与电子性质。结果表明,随着氮族元素原子序数的递增,其氢化物(ZH3)中心原子杂化轨道中s成分减小,p成分逐渐增大,杂化轨道偏离平面的程度依次增大,导致NH3空间构型的最为“平面”,而BiH3最为“锥形”。尽管阳离子ZH+4由ZH3中Z的一个不等性sp3杂化轨道提供孤对电子与H+形成,但ZH+4中4个Z-H键等价,Z总体呈现等性sp3杂化。ZH4X均为C3v对称的四面体结构,ZH3与HX之间的作用驱动力来源于离子型的氢键(H3Z…H*-X)而非ZH+4与X-阴阳离子对(ZH+4X-)间的静电作用,H3Z…H*-X内的电子转移主要发生在轨道LP1(Z)与σ*(H*-X)之间。  相似文献   

14.
采用密度泛函理论(DFT)中的广义梯度近似(GGA)方法对C56X10(X=F, Cl, Br, I)的结构稳定性和电子性质进行了计算研究. 结构稳定性计算表明: 对于C56X10(X=F, Cl, Br, I), 能隙、反应热、最大振动频率和最小振动频率都随着X原子序数的增加而减小, 表明C56X10(X=F, Cl, Br, I)的稳定性随着X原子序数的增加而逐渐降低, 其中C56F10最为稳定. 前人在实验上已成功合成出C56Cl10, 因此, 我们推测C56F10有望在实验上成功合成. 前线轨道计算发现, C56相邻的五边形公共顶点以及两个六边形-五边形-六边形公共顶点是笼子中化学活性最强的部位, 有利于卤族元素的外部吸附. 此外, 计算结果还显示, C56X10(X=F, Cl, Br, I)的电负性随着X原子序数的增大而逐渐减弱, C—X基团的电负性因位置的不同而不同.  相似文献   

15.
采用基于密度泛函理论的第一性原理平面波超软赝势计算方法, 研究了In、Sc p型掺杂对SrTiO3母体化合物稳定性、电子结构和光学性质的影响. 计算结果表明:掺杂后, SrIn0.125Ti0.875O3和SrSc0.125Ti0.875O3的稳定性降低, 体系显示p型简并半导体特征, 掺杂仅引起杂质原子近邻区域的几何结构发生变化. 同时, SrIn0.125Ti0.875O3和SrSc0.125Ti0.875O3体系的光学带隙分别展宽0.35、0.30 eV, 光学吸收边发生蓝移, 在1.25-2.00 eV的能量区间出现新的吸收峰, 该吸收峰与体系Drude型自由载流子的激发相关. 此外, SrIn0.125Ti0.875O3和SrSc0.125Ti0.875O3体系的可见光透过率有了明显的提高, 在350-625 nm波长范围透过率高于85%. 掺杂原子在费米能级处低的电子态密度限制了跃迁概率和光吸收. 大的禁带宽度、小的跃迁概率和弱的光吸收是SrIn0.125Ti0.875O3和SrSc0.125Ti0.875O3体系具有较高光学透明度的原因.  相似文献   

16.
秦成龙  罗祥燕  谢泉 《无机化学学报》2020,36(11):2071-2079
基于密度泛函理论的第一性原理计算,研究了本征硅纳米管(SiNTs)的几何结构,以及Ⅲ族元素B、Al、Ga掺杂对单壁锯齿型(14,0)SiNTs稳定性、电子结构和光学性质的影响。结果表明,褶皱型SiNTs为SiNTs稳定存在的结构,B、Al、Ga掺杂能够提高SiNTs的稳定性。本征(14,0)SiNTs属于窄带隙金属材料,通过B、Al、Ga的分别掺杂,SiNTs的带隙变宽,实现了SiNTs从金属性向半导体性质的转变。随着Ⅲ族元素原子序数的增大,其掺杂体系的稳定性不断降低,相应的带隙也不断减少。B、Al、Ga掺杂的单壁锯齿型(14,0)SiNTs具有近乎一致的光学性质,对于紫外光有着很强的吸收特性,并且对于红外和可见光吸收也有着不错的提升。  相似文献   

17.
采用基于密度泛函理论(DFT)的第一性原理平面波赝势法研究了本征ZnO、Y和Cu单掺杂ZnO、Y-Cu共掺杂ZnO的电子结构和光学性质. 计算结果表明, 在本文的掺杂浓度下, Y和Cu单掺杂可以提高ZnO的载流子浓度, 从而改善ZnO的导电性, Y-Cu共掺时ZnO半导体进入简并状态, 呈现金属性. Y 掺杂ZnO可以提高体系在紫外区域的吸收, 而Cu掺杂ZnO在可见光和近紫外区域发生吸收增强现象, 其中由于Y离子和Cu离子之间的协同效应, Y-Cu共掺杂ZnO时体系对可见光和近紫外区域的光子能量吸收大幅增加, 因此Y-Cu共掺杂ZnO可以用于制作光电感应器件.  相似文献   

18.
采用基于密度泛函理论框架下的第一性原理平面波超软赝势方法, 计算了In2O3电子结构和光学线性响应函数, 系统研究了In2O3电子结构与光学性质的内在关系. 利用计算的能带结构和态密度分析了带间跃迁占主导地位的In2O3材料的能量损失函数、介电函数、反射图谱, 根据电荷密度差分图分析了In2O3材料的化学和电学特性. 研究结果表明In2O3光学透过率在可见光范围内高达85%, 可作为优异的透明导电薄膜材料. 同时, 计算结果为我们制备基于In2O3透明导电材料的设计与大规模应用提供了理论依据, 也为监测和控制这一类透明导电材料的生长过程提供了可能性.  相似文献   

19.
为了探索AlN在光电器件中的潜在应用,采用第一性原理计算了不同Lu掺杂浓度(以原子分数x表示)的AlN(Al1-xLuxN)的电子结构和光学性质。研究结果表明,Al1-xLuxN的超胞体积随着Lu掺杂浓度的增加而增加,而带隙则相反。Al1-xLuxN的静态介电常数在低能区随掺杂浓度的提高而提高,随后逐渐趋向一致。随着Lu掺杂浓度的增加,反射率和吸收系数的峰值强度降低,峰值向较低能量方向移动。Al1-xLuxN的能量损失光谱表现出明显的等离子体振荡特性,且峰值低于本征AlN。Al1-xLuxN的光电导率在低能区随能量的增加而急剧增加。  相似文献   

20.
为了探索 AlN在光电器件中的潜在应用,采用第一性原理计算了不同 Lu掺杂浓度(以原子分数 x表示)的 AlN(Al1-xLuxN)的电子结构和光学性质。研究结果表明,Al1-xLuxN的超胞体积随着Lu掺杂浓度的增加而增加,而带隙则相反。Al1-xLuxN的静态介电常数在低能区随掺杂浓度的提高而提高,随后逐渐趋向一致。随着Lu掺杂浓度的增加,反射率和吸收系数的峰值强度降低,峰值向较低能量方向移动。Al1-xLuxN的能量损失光谱表现出明显的等离子体振荡特性,且峰值低于本征AlN。Al1-xLuxN的光电导率在低能区随能量的增加而急剧增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号