首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solution nuclear magnetic resonance spectroscopy (NMR) is used to identify and quantify the organic capping of colloidal PbSe nanocrystals (Q-PbSe). We find that the capping consists primarily of tightly bound oleic acid ligands. Only a minor part of the ligand shell (0-5% with respect to the number of oleic acid ligands) is composed of tri- n-octylphosphine. As a result, tuning of the Q-PbSe size during synthesis is achieved by varying the oleic acid concentration. By combining the NMR results with inductively coupled plasma mass spectrometry, a complete Q-PbSe structural model of semiconductor core and organic ligands is constructed. The nanocrystals are nonstoichiometric, with a surface that is composed of lead atoms. The absence of surface selenium atoms is in accordance with an oleic acid ligand shell. NMR results on a Q-PbSe suspension, stored under ambient conditions, suggest that oxidation leads to the loss of oleic acid ligands and surface Pb atoms, forming dissolved lead oleate.  相似文献   

2.
Inorganic nanocrystals with tailored geometries exhibit unique shape-dependent phenomena and subsequent utilization of them as building blocks for the fabrication of nanodevices is of significant interest. Herein, we review the recent developments in the shape control of colloidal nanocrystals with a focus on the scientifically and technologically important semiconductor and metal oxide nanocrystals obtained by nonhydrolytic synthetic methods. Many structurally unprecedented motifs have been discovered including polyhedrons, rods and wires, plates and prisms, and other advanced shapes such as branched rods, stars, inorganic dendrites, and dumbbells. The currently proposed shape-guiding mechanisms are presented and the important pioneering studies on the assembly of shape-controlled nanocrystals into ordered superlattices and the fabrication of prototype advanced nanodevices are discussed.  相似文献   

3.
Core/shell nanocrystals (NCs) integrate collaborative functionalization that would trigger advanced properties, such as high energy conversion efficiency, nonblinking emission, and spin–orbit coupling. Such prospects are highly correlated with the crystal structure of individual constituents. However, it is challenging to achieve novel phases in core/shell NCs, generally non-existing in bulk counterparts. Here, we present a fast and clean high-pressure approach to fabricate heterostructured core/shell MnSe/MnS NCs with a new phase that does not occur in their bulk counterparts. We determine the new phase as an orthorhombic MnP structure (B31 phase), with close-packed zigzagged arrangements within unit cells. Encapsulation of the solid MnSe nanorod with an MnS shell allows us to identify two separate phase transitions with recognizable diffraction patterns under high pressure, where the heterointerface effect regulates the wurtzite → rocksalt → B31 phase transitions of the core. First-principles calculations indicate that the B31 phase is thermodynamically stable under high pressure and can survive under ambient conditions owing to the synergistic effect of subtle enthalpy differences and large surface energy in nanomaterials. The ability to retain the new phase may open up the opportunity for future manipulation of electronic and magnetic properties in heterostructured nanostructures.

Core/shell MnSe/MnS nanocrystals with the B31 phase are thermodynamically stable under high pressure and can survive under ambient conditions owing to the synergistic effect of subtle enthalpy differences and high surface energy in nanomaterials.  相似文献   

4.
In this paper, we have developed an organic-phase synthesis method for producing size-controlled, nearly monodispersed, colloidal uranium-dioxide nanocrystals. These UO2 nanocrystals are potentially important to applications such as nuclear fuel materials, catalysts, and thermopower materials. In addition, we have systematically mapped out the functions of the solvents (oleic acid, oleylamine, and 1-octadecene) in the synthesis, and we found that N-(cis-9-octadecenyl)oleamide-a product of the condensation of oleic acid and oleylamine-can substantially affect the formation of UO2 nanocrystals. Importantly, these results provide fundamental insight into the mechanisms of UO2 nanocrystal synthesis. Moreover, because a mixture of oleic acid and oleylamine has been widely used in synthesizing a variety of high-quality metal or metal-oxide nanocrystals, the results herein should also be important for understanding the detailed mechanisms of these syntheses.  相似文献   

5.
Recent advances in nanocrystal doping chemistries have substantially broadened the variety of photophysical properties that can be observed in colloidal Mn2+-doped semiconductor nanocrystals. A brief overview is provided, focusing on Mn2+-doped II–VI semiconductor nanocrystals prepared by direct chemical synthesis and capped with coordinating surface ligands. These Mn2+-doped semiconductor nanocrystals are organized into three major groups according to the location of various Mn2+-related excited states relative to the energy gap of the host semiconductor nanocrystals. The positioning of these excited states gives rise to three distinct relaxation scenarios following photoexcitation. A brief outlook on future research directions is provided.  相似文献   

6.
Colloidal inorganic nanocrystals stand out as an important class of advanced nanomaterials owing to the flexibility with which their physical-chemical properties can be controlled through size, shape, and compositional engineering in the synthesis stage and the versatility with which they can be implemented into technological applications in fields as diverse as optoelectronics, energy conversion/production, catalysis, and biomedicine. The use of microwave irradiation as a non-classical energy source has become increasingly popular in the preparation of nanocrystals (which generally involves complex and time-consuming processing of molecular precursors in the presence of solvents, ligands and/or surfactants at elevated temperatures). Similar to its now widespread use in organic chemistry, the efficiency of "microwave flash heating" in dramatically reducing overall processing times is one of the main advantages associated with this technique. This Review illustrates microwave-assisted methods that have been developed to synthesize colloidal inorganic nanocrystals and critically evaluates the specific roles that microwave irradiation may play in the formation of these nanomaterials.  相似文献   

7.
Colloidal ZnO nanocrystals capped with dodecylamine and dissolved in toluene can be charged photochemically to give stable solutions in which electrons are present in the conduction bands of the nanocrystals. These conduction-band electrons are readily monitored by EPR spectroscopy, with g* values that correlate with the nanocrystal sizes. Mixing a solution of charged small nanocrystals (e(-)(CB):ZnO-S) with a solution of uncharged large nanocrystals (ZnO-L) caused changes in the EPR spectrum indicative of quantitative electron transfer from small to large nanocrystals. EPR spectra of the reverse reaction, e(-)(CB):ZnO-L + ZnO-S, showed that electrons do not transfer from large to small nanocrystals. Stopped-flow kinetics studies monitoring the change in the UV band-edge absorption showed that reactions of 50 μM nanocrystals were complete within the 5 ms mixing time of the instrument. Similar results were obtained for the reaction of charged nanocrystals with methyl viologen (MV(2+)). These and related results indicate that the electron-transfer reactions of these colloidal nanocrystals are quantitative and very rapid, despite the presence of ~1.5 nm long dodecylamine capping ligands. These soluble ZnO nanocrystals are thus well-defined redox reagents suitable for studies of electron transfer involving semiconductor nanostructures.  相似文献   

8.
Pang M  Liu D  Lei Y  Song S  Feng J  Fan W  Zhang H 《Inorganic chemistry》2011,50(12):5327-5329
Rare-earth-doped magnetic-optic bifunctional alkaline-earth metal fluoride nanocrystals have been successfully synthesized via a facile microwave-assisted process. The as-prepared nanocrystals were monodisperse and could form stable colloidal solutions in polar solvents, such as water and ethanol. They show bright-green fluorescence emisson. Furthermore, Gd(3+)-doped ones exhibit paramagnetic behavior at room temperature and superparamagnetic behavior at 2 K.  相似文献   

9.
Electrochemical synthesis (ES) of polyaniline (PAn) at the surface covered by an oxide film is realized at a significantly higher voltage than is needed for the formation of a nonoveroxidized polymer. The involvement of catalytic amounts of the salts of transition metals in ES of PAn essentially facilitates the process at Ti, Ta, Pb, Al and stainless steel electrodes. IrCI2−6 anion was found to be an effective catalyst. During ES, IrCI2−6 forms a complex with aniline, where IrIY oxidizes aniline to a radical cation. The formation of radical cation is a limiting stage ES PAn. It is realized in a moment in the presence of IrCI2−6, thus providing a significant decrease of the induction period at a potentiostatic synthesis and the lowering of a working potential at a galvanostatic synthesis. It is shown that the composition of the complex includes IrIII and 2 aniline molecules, which form a paramagnetic dimer inside a coordination sphere. © 1997 John Wiley & Sons, Ltd.  相似文献   

10.
11.
Study on non-noble metal catalysts for automotive emission control   总被引:2,自引:0,他引:2  
Cordierite honeycomb catalysts supported on rare earth (RE)-transition metal oxides, used for removing simultaneously three major pollutants, carbon monoxide (CO), hydrocarbon (HC) and nitrogen oxides (NOx), in automotive emission have been investigated. The results indicate that the catalyst has improved three-way performance (TWP).  相似文献   

12.
13.
This article gives an overview of recent progress in the self-assembly of nanocrystals. Classic self-assembly of nanocrystals, so-called colloidal crystallization driven by van der Waals interactions, is highlighted first with an emphasis on the recent realization of binary colloidal crystals. Next, new developments in the integration of nanocrystals into clusters based on electrostatic interactions, hydrogen bonding and dipole-dipole interactions are summarized, shedding light on the defined control of the interactions between the nanocrystals. Finally, the fabrication of heterogenous nanocrystals, obtained via either phase selective modification at the water/oil interface or facet-selective crystal growth on non-spherical nanocrystals is discussed. These last materials may provide significant building blocks for mimicking molecular self-assembly.  相似文献   

14.
15.
Monodisperse 1-2 nm silicon nanocrystals are synthesized in reverse micelles and have their surfaces capped with either allylamine or 1-heptene to produce either hydrophilic or hydrophobic silicon nanocrystals. Optical characterization (absorption, PL, and time-resolved PL) is performed on colloidal solutions with the two types of surface-capped silicon nanocrystals with identical size distributions. Direct evidence is obtained for the modification of the optical properties of silicon nanocrystals by the surface-capping molecule. The two different surface-capped silicon nanocrystals show remarkably different optical properties.  相似文献   

16.
A high-temperature solution-phase hydrolysis approach has been developed for the synthesis of colloidal magnetite nanocrystals with well-controlled size and size distribution, high crystallinity, and high water solubility. The synthesis was accomplished by the hydrolysis and reduction of iron(III) cations in diethylene glycol with a rapidly injected solution of sodium hydroxide at an elevated temperature. The high reaction temperature allows for control over size and size distribution and yields highly crystalline products. The superior water solubility is achieved by using a polyelectrolyte, that is, poly(acrylic acid) as the capping agent, the carboxylate groups of which partially bind to the nanocrystal surface and partially extend into the surrounding water. The direct synthesis of water-soluble nanocrystals eliminates the need for additional surface modification steps which are usually required for treating hydrophobic nanocrystals produced in nonpolar solvents through the widely recognized pyrolysis route. The abundant carboxylate groups on the nanocrystal surface allow further modifications, such as bioconjugation, as demonstrated by linking cysteamine to the particle surface. The monodisperse, highly water-soluble, superparamagnetic, and biocompatible magnetite nanocrystals should find immediate important biomedical applications.  相似文献   

17.
Properties of materials determined by their size are indeed fascinating and form the basis of the emerging area of nanoscience. In this article, we examine the size dependent electronic structure and properties of nanocrystals of semiconductors and metals to illustrate this aspect. We then discuss the chemical reactivity of metal nanocrystals which is strongly dependent on the size not only because of the large surface area but also a result of the significantly different electronic structure of the small nanocrystals. Nanoscale catalysis of gold exemplifies this feature. Size also plays a role in the assembly of nanocrystals into crystalline arrays. While we owe the beginnings of size-dependent chemistry to the early studies of colloids, recent findings have added a new dimension to the subject.  相似文献   

18.
Surface chemistry can become pronounced in determining the optical properties of colloidal metal nanoparticles as the nanoparticles become so small (diameters <20 nm) that the surface atoms, which can undergo chemical interactions with the environment, represent a significant fraction of the total number of atoms although this effect is often ignored. For instance, formation of chemical bonds between surface atoms of small metal nanoparticles and capping molecules that help stabilize the nanoparticles can reduce the density of conduction band electrons in the surface layer of metal atoms. This reduced electron density consequently influences the frequency-dependent dielectric constant of the metal atoms in the surface layer and, for sufficiently high surface to volume ratios, the overall surface plasmon resonance (SPR) absorption spectrum. The important role of surface chemistry is highlighted here by carefully analyzing the classical Mie theory and a multi-layer model is presented to produce more accurate predictions by considering the chemically reduced density of conduction band electrons in the outer shell of metal atoms in nanoparticles. Calculated absorption spectra of small Ag nanoparticles quantitatively agree with the experimental results for our monodispersed Ag nanoparticles synthesized via a well-defined chemical reduction process, revealing an exceptional size-dependence of absorption peak positions: the peaks first blue-shift followed by a turnover and a dramatic red-shift as the particle size decreases. A comprehensive understanding of the relationship between surface chemistry and optical properties is beneficial to exploit new applications of small colloidal metal nanoparticles, such as colorimetric sensing, electrochromic devices, and surface enhanced spectroscopies.  相似文献   

19.
The chemistry of phosphorus is nowadays rivaling that of carbon in terms of complexity and diversity. This tutorial review highlights the state-of-the-art in the field of metal-mediated activation and functionalization of white phosphorus. Particular attention is given to an illustration of the coordination abilities of the intact molecule as well as the disaggregating and reaggregating metal-mediated processes resulting in different polyphosphorus ligands from P(1) to P(12). The metal-promoted P-C and P-H bond forming processes are also reviewed showing that an ecoefficient catalytic protocol for transforming P(4) into high value organophosphorus compounds is a concrete possibility for chemical companies.This tutorial review deals with the activation and functionalization of white phosphorus in the coordination sphere of transition metal complexes. Particular attention is given to the coordination abilities of the intact molecule as well as to the disaggregating and reaggregating metal-mediated processes yielding various polyphosphorus ligands from P(1) to P(12). The metal-promoted processes for P-C and P-H bond formation are also reviewed showing that an ecoefficient catalytic protocol for transforming P(4) into high value organophosphorus compounds offers good opportunities for chemical companies.  相似文献   

20.
The colloidal synthesis and magnetic properties of MnPt(3) nanocrystals are reported. The nanocrystal size depended on the Mn reactant used, but the Mn:Pt stoichiometry was always 1:3. As synthesized, the nanocrystals are compositionally disordered with the face-centered cubic (fcc) A1 phase. Annealing at 580 degrees C changed the MnPt(3) crystal structure to the compositionally ordered L1(2) phase (AuCu(3) structure) with higher magnetocrystalline anisotropy. Magnetization measurements showed that the A1 nanocrystals are paramagnetic and the L1(2) MnPt(3) nanocrystals are superparamagnetic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号