首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ibrutinib is a recently approved anticancer drug recommended for the treatment of mantle cell lymphoma and chronic lymphocytic leukemia. It has been reported as practically insoluble in water and hence it is available in the market at higher doses. Poor solubility of ibrutinib limits its development to oral solid dosage forms only. In this work, the solubilities of ibrutinib were measured in various 2-(2-ethoxyethoxy)ethanol (Carbitol) + water mixtures at T = (298.15 to 323.15) and p = 0.1 MPa. The solubility of ibrutinib was measured using an isothermal method. The thermodynamics function of ibrutinib was also studied. The measured solubilities of ibrutinib were correlated and fitted with Van’t Hoff, the modified Apelblat and Yalkowsky models. The results of curve fitting of all three models showed good correlation of experimental solubilities of ibrutinib with calculated ones. The mole fraction solubility of ibrutinib was observed highest in pure 2-(2-ethoxyethoxy)ethanol (2.67 · 10−2 at T = 298.15 K) and lowest in pure water (1.43 · 10−7 at T = 298.15 K) at T = (298.15 to 323.15) K. Thermodynamics data of ibrutinib showed an endothermic, spontaneous and an entropy-driven dissolution behavior of ibrutinib in all 2-(2-ethoxyethoxy)ethanol + water mixtures. Based on these results, ibrutinib has been considered as practically insoluble in water and freely soluble in 2-(2-ethoxyethoxy)ethanol. Therefore, 2-(2-ethoxyethoxy)ethanol could be used as a physiologically compatible cosolvent for solubilization and stabilization of ibrutinib in an aqueous media. The solubility data of this work could be extremely useful in preformulation studies and formulation development of ibrutinib.  相似文献   

2.
The equilibrium solubility of sodium 2-naphthalenesulfonate in binary (sodium chloride + water), (sodium sulfate + water), and (ethanol + water) solvent mixtures was measured at elevated temperatures from (278.15 to 323.15) K using a steady-state method. With increasing temperatures, the solubility increases in aqueous solvent mixtures. The results of these results were regressed by a modified Apelblat equation. The dissolution entropy and enthalpy determined using the method of the least-squares and the change of Gibbs free energy calculated with the values of ΔdiffSo and ΔdiffHo at T = 278.15 K.  相似文献   

3.
The solubility of sodium 3-sulfobenzoate in binary (sodium chloride + water), (sodium sulfate + water), and (ethanol + water) solvent mixtures was measured at elevated temperatures from (278.15 to 323.15) K by a steady-state method. The results of these experiments were correlated by a modified Apelblat equation. The dissolution enthalpy and entropy of sodium 3-sulfobenzoate in aqueous solutions of different mole fraction were obtained.  相似文献   

4.
(Liquid + liquid) equilibrium (LLE) data of (water + ethanol + dimethyl glutarate) have been determined experimentally at T=(298.15,308.15 and 318.15) K. The reliability of the experimental tie-line data was ascertained by using the Othmer and Tobias correlation. The LLE data of the ternary mixture were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

5.
The solubility of 2,3,4,5-tetrabromothiophene in (ethanol + tetrahydrofuran) binary solvent mixtures was measured within the temperature range from (278.15 to 322.15) K. The solubility increases with the rise of temperature, while it decreases with increasing ethanol content at constant temperature. The experimental data were fitted using the two variants of the combined nearly ideal binary solvent/Redlich–Kister (CNIBS/R–K) equation and the Jouyban–Acree equation, respectively. All the three equations were proven to give good representations of the experimental values. Computational results showed that the variant two of CNIBS/R–K equation was superior to the other two equations. The thermodynamic properties of the solution process, including the Gibbs free energy, enthalpy, and entropy, were calculated by the van’t Hoff analysis. The values of both the enthalpy change and the standard molar Gibbs free energy change of solution were positive, which indicated that the process was endothermic.  相似文献   

6.
Water activities in the ternary system (CaCl2 + SrCl2 + H2O) and its sub-binary system (CaCl2 + H2O) at T = 298.15 K have been elaborately measured by an isopiestic method. The data of the measured water activity were used to justify the reliability of solubility isotherms reported in the literature by correlating them with a thermodynamic Pitzer–Simonson–Clegg (PSC) model. The model parameters for representing the thermodynamic properties of the (CaCl2 + H2O) system from (0 to 11) mol  kg−1 at T = 298.15 K were determined, and the experimental water activity data in the ternary system were compared with those predicted by the parameters determined in the binary systems. Their agreement indicates that the PSC model parameters can reliably represent the properties of the ternary system. Under the assumption that the equilibrium solid phases are the pure solid phases (SrCl2  6H2O and CaCl2  6H2O)(s) or the ideal solid solution consisting of CaCl2  6H2O(s) and SrCl2  6H2O(s), the solubility isotherms were predicted and compared with experimental data from the literature. It was found that the predicted solubility isotherm agrees with experimental data over the entire concentration range at T = 298.15 K under the second assumption described above; however, it does not under the first assumption. The modeling results reveal that the solid phase in equilibrium with the aqueous solution in the ternary system is an ideal solid solution consisting of SrCl2  6H2O(s) and CaCl2  6H2O(s). Based on the theoretical calculation, the possibility of the co-saturated points between SrCl2  6H2O(s) and the solid solution (CaCl2  6H2O + SrCl2  6H2O)(s) and between CaCl2  6H2O(s) and the solid solution (CaCl2  6H2O + SrCl2  6H2O)(s), which were reported by experimental researchers, has been discussed, and the Lippann diagram of this system has been presented.  相似文献   

7.
Total vapour pressures, measured at the temperature 313.15 K, are reported for the ternary mixture (N,N-dimethylacetamide + ethanol + water), and for binary constituent (N,N-dimethylacetamide + ethanol). The present results are also compared with previously obtained data for (amide + ethanol) binary mixtures, where amide = N-methylformamide, N,N-dimethylformamide, N-methylacetamide, 2-pyrrolidinone, and N-methylpyrrolidinone. We found that excess Gibbs free energy of mixing for binary (amide + ethanol) mixtures varies roughly linearly with the molar volume of amide.  相似文献   

8.
Experimental (liquid + liquid) equilibrium (LLE) data were determined for a ternary system (polyvinylpyrrolidone + MgSO4 + water) at various temperatures of (298.15, 303.15, and 308.15) K. The UNIQAC, modified regular solution, modified Wilson and Chen-NRTL models were used to correlate the experimental tie-line data. The results show that at each temperature, the quality of fitting is better with the Chen-NRTL model.  相似文献   

9.
Precise excess volumes of mixing measurements at T = 313.15 K are reported over the whole composition range for binary mixtures: (N,N-dimethylacetamide + water), (N,N-dimethylacetamide + methanol), (N,N-dimethylacetamide + ethanol) and for the ternary mixtures (N,N-dimethylacetamide + methanol + water) and (N,N-dimethylacetamide + ethanol + water). For all the systems, large negative deviations from ideality are observed. The binary results have been fitted using the Redlich–Kister type polynomial. The possibility of predicting the ternary results from the binary ones was examined.  相似文献   

10.
The solubility of daidzin in different organic solvents and (ethyl alcohol + water) mixed solvents was measured by high performance liquid chromatography (HPLC) analysis method from T = (283.2 to 323.2) K at atmosphere pressure. The results show that at higher temperature more daidzin dissolves, and moreover, the solubility increases with the ethyl alcohol mole fraction increase in the (ethyl alcohol + water) mixed solvents. The experimental solubility values were correlated by a simplified thermodynamic equation, λh equation and modified Apelblat equation. Based on the solubility of daidzin, the enthalpy and entropy of solution were also evaluated by van’t Hoff equation. The results illustrated that the dissolution process of daidzin is endothermic and entropy driven.  相似文献   

11.
In this study, a new set of data for the equilibrium solubility of carbon dioxide in the amine solvent system that consists of triethanolamine (TEA), piperazine (PZ), and water is presented. Equilibrium solubility values were obtained at T = (313.2, 333.2, and 353.2) K and pressures up to 153 kPa using the vapour-recirculation equilibrium cell. The TEA concentrations in the considered ternary (solvent) mixture were (2 and 3) kmol · m?3 and those of PZ’s were (0.5, 1.0, and 1.5) kmol · m?3. The solubility data (CO2 loading in the amine solution) obtained were correlated as a function of CO2 partial pressure, system temperature, and amine composition via the modified Kent–Eisenberg model. Results showed that the model applied is generally satisfactory in representing the CO2 absorption into mixed aqueous solutions of TEA and PZ.  相似文献   

12.
Phase diagram and (liquid + liquid) equilibrium (LLE) results for {NaClO4 + polyethylene glycol 4000 (PEG 4000) + H2O} have been determined experimentally at T = (288.15, 298.15, and 308.15) K. The Chen-NRTL, modified Wilson and UNIQUAC models were used to correlate the values for the experimental tie-lines. The results show that the quality of fitting is better with the modified Wilson model.  相似文献   

13.
Phase diagram and (liquid + liquid) equilibrium (LLE) data for the (NaNO3 + polyethylene glycol 4000 (PEG 4000) + H2O) system have been determined experimentally at T = (288.15 and 308.15) K. The effects of temperature on the binodal curves and tie-lines have been studied and it was found that an increasing in temperature caused the expansion of two-phase region. The Chen-NRTL, modified Wilson and UNIQUAC models were used to correlate the experimental tie-line data. The results show that the quality of fitting is better with the UNIQUAC model.  相似文献   

14.
(Liquid  +  liquid) equilibrium data of (tert amyl ethyl ether  +  ethanol  +  water) were determined experimentally atT =  (298.15, 308.15, and 318.15) K. The experimental results were correlated with the NRTL and UNIQUAC equations. The correlations were made at each temperature and for the three temperatures simultaneously. The best results were achieved with the NRTL equation, using α =  0.2 for the individual correlations at each temperature and α =  0.1 for the overall correlation. The experimental data were also compared with predicted values by the UNIFAC method.  相似文献   

15.
《印度化学会志》2022,99(12):100802
In this study, due to the importance of the solubility of this vitamin in solvents, based on the UNIQUAC activity coefficient equation, its solubility in the presence of water, acetonitrile, n-propanol and isopropanol has been studied. To investigate the interaction behavior of components in the system, the desired thermodynamic equations were optimized based on experimental results with a combined Genetic + PSO algorithm. Based on the objective function, the value of the theoretical and experimental model was acceptable. Therefore, the optimized model can be significant for formulating and investigating solubility of B6 hydrochloride based on the design of a computer program.  相似文献   

16.
Equilibria of EuO dissolution and dissociation in molten (NaBr + NaI) mixtures of 0.77:0.23 and 0.31:0.69 compositions at T = 973 K were studied by potentiometric titration method using Pt(O2)|ZrO2(Y2O3) indicator electrode. The solubility product indices of EuO are (7.81 ± 0.08) and (8.43 ± 0.16) in the melts of 0.77:0.23 and 0.31:0.69 compositions. The corresponding dissociation constant indices are (4.96 ± 0.04) and (5.54 ± 0.06), respectively (all the parameters are in molality). Non-dissociated EuO is the prevailing form in all the saturated solutions of europium monoxide. The decrease of the iodide ion concentration in the melts results in strengthening of EuO dissociation that is explained by introduction of harder Pearson’s base (Br) in sodium iodide melt. In its turn this increases the fixation degree of Eu2+ in mixed halide complexes. The total solubility of EuO decreases going from NaI melt to the (bromide + iodide) mixtures that is caused by the decrease of ‘physical’ solubility of non-dissociated oxide which occupies hollow spaces of enough large size in the ionic solvents. The quantity of these hollow spaces diminishes at the sequential Br  I substitution.  相似文献   

17.
(Solid + liquid) equilibrium data for indomethacin (IMC) and nicotinamide (NCT) in both methanol (MeOH) and methanol/ethyl acetate (EA) mixture were determined using a static method at T = (298.15 and 313.15) K under atmospheric pressure. The 1:1 (IMC + NCT) co-crystal and IMC·MeOH were found in both systems under conditions investigated. The solubility of the 1:1 (IMC + NCT) co-crystal was correlated using a mathematical model consisting of both solubility product and a complexation process. Solubility of (IMC + NCT) co-crystals as a function of co-former (NCT) concentration was evaluated. It was found that temperature has a significant effect on the formation of methanol solvate in the systems investigated. Solvate formation could be suppressed either by increasing temperature or using solvent mixtures. Additionally, the solvent mixture could level out the solubility differences between IMC and NCT, resulting in larger and more symmetric regions for the (IMC + NCT) co-crystal, which would be helpful to the development of the co-crystallization process for the 1:1 (IMC + NCT) co-crystal.  相似文献   

18.
The thermal properties of {tetra-n-butylammonium bromide + tetra-n-butylammonium chloride (TBAB + TBAC)} mixed semiclathrate hydrates prepared from aqueous solutions were investigated by dissociation temperature measurements and differential scanning calorimetry (DSC). The maximum dissociation temperature of the mixed hydrate crystals at 0.1 MPa is 288.5 K for xTBAB = 0.2 {mole fraction of TBAB to (TBAB + TBAC)}, which is higher than that of the pure hydrates {T = (285.5 and 288.2) K for TBAB and TBAC hydrates, respectively}. In addition, the dissociation enthalpies of the mixed hydrates are higher than those of the pure hydrates {(5.55 ± 0.06) kJ  mol−1 H2O for pure TBAB hydrate and (5.30 ± 0.05) kJ  mol−1 H2O for pure TBAC hydrate}, with a maximum of (5.95 ± 0.12) kJ  mol−1 H2O recorded at approximately xTBAB = 0.4. It was therefore suggested that the crystal distortion in (TBAB + TBAC) mixed hydrates, caused by replacing water molecules by both bromide and chloride anions, was smaller than that observed for each pure hydrate. Consequently, the hydration numbers in the mixed hydrates were hypothesized to be slightly higher than those of the pure hydrates.  相似文献   

19.
In this work, the mean activity coefficients of MgCl2 in pure water and (glucose + water) mixture solvent were determined using a galvanic cell without liquid junction potential of type: (Mg2+ + ISE)|MgCl2 (m), glucose (wt.%), H2O (100 wt.%)|AgCl|Ag. The measurements were performed at T = 298.15 K. Total ionic strengths were from (0.0010 to 6.0000) mol · kg−1. The various (glucose + water) mixed solvents contained (0, 10, 20, 30 and 40)% mass fractions percentage of glucose respectively. The mean activity coefficients measured were correlated with Pitzer ion interaction model and the Pitzer adjustable parameters were determined. Then these parameters were used to calculate the thermodynamics properties for under investigated system. The results showed that Pitzer ion interaction model can satisfactory describe the investigated system. The modified three-characteristic-parameter correlation (TCPC) model was applied to correlate the experimental activity coefficient data for under investigation electrolyte system, too.  相似文献   

20.
The density, dynamic viscosity, and refractive index of the ternary system (ethanol + water + 1,3-dimethylimidazolium methylsulphate) at T = 298.15 K and of its binary systems 1,3-dimethylimidazolium methylsulphate with ethanol and with water at several temperatures T = (298.15, 313.15, and 328.15) K and at 0.1 MPa have been measured over the whole composition range. From these physical properties, excess molar volumes, viscosity deviations, refractive index deviations, and excess free energy of activation for the binary systems at the above mentioned temperatures, were calculated and fitted to the Redlich–Kister equation to determine the fitting parameters and the root-mean-square deviations. For the ternary system, the excess properties were calculated and fitted to Cibulka, Singh et al., and Nagata and Sakura equations. The ternary excess properties were predicted from binary contributions using geometrical solution models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号