首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of Ni(OTf)2 with the bisbidentate quaterpyridine ligand L results in the self-assembly of a tetrahedral, paramagnetic cage [NiII4L6]8+. By selectively exchanging the bound triflate from [OTf⊂NiII4L6](OTf)7 (1), we have been able to prepare a series of host–guest complexes that feature an encapsulated paramagnetic tetrahalometallate ion inside this paramagnetic host giving [MIIX4⊂NiII4L6](OTf)6, where MIIX42− = MnCl42− (2), CoCl42− (5), CoBr42− (6), NiCl42− (7), and CuBr42− (8) or [MIIIX4⊂NiII4L6](OTf)7, where MIIIX4 = FeCl4 (3) and FeBr4 (4). Triflate-to-tetrahalometallate exchange occurs in solution and can also be accomplished through single-crystal-to-single-crystal transformations. Host–guest complexes 1–8 all crystallise as homochiral racemates in monoclinic space groups, wherein the four {NiN6} vertexes within a single Ni4L6 unit possess the same Δ or Λ stereochemistry. Magnetic susceptibility and magnetisation data show that the magnetic exchange between metal ions in the host [NiII4] complex, and between the host and the MX4n guest, are of comparable magnitude and antiferromagnetic in nature. Theoretically derived values for the magnetic exchange are in close agreement with experiment, revealing that large spin densities on the electronegative X-atoms of particular MX4n guest molecules lead to stronger host–guest magnetic exchange interactions.

The tetrahedral [NiII4L6]8+ cage can reversibly bind paramagnetic MX41/2− guests, inducing magnetic exchange interactions between host and guest.  相似文献   

2.
Here we present the synthesis, structure and magnetic properties of complexes of general formula (Mn)(Me2NH2)4][Mn3(μ-L)6(H2O)6] and (Me2NH2)6[M3(μ-L)6(H2O)6] (M = CoII, NiII and CuII); L−2 = 4-(1,2,4-triazol-4-yl) ethanedisulfonate). The trinuclear polyanions were isolated as dimethylammonium salts, and their crystal structures determined by single crystal and powder X-ray diffraction data. The polyanionic part of these salts have the same molecular structure, which consists of a linear array of metal(II) ions linked by triple N1-N2-triazole bridges. In turn, the composition and crystal packing of the MnII salt differs from the rest of the complexes (with six dimethyl ammonia as countercations) in containing one Mn+2 and four dimethyl ammonia as countercations. Magnetic data indicate dominant intramolecular antiferromagnetic interactions stabilizing a paramagnetic ground state. Susceptibility data have been successfully modeled with a simple isotropic Hamiltonian for a centrosymmetric linear trimer, H = −2J (S1S2 + S2S3) with super-exchange parameters J = −0.4 K for MnII, −7.5 K for NiII and −45 K for CuII complex. The magnetic properties of these complexes and their easy processing opens unique possibilities for their incorporation as magnetic molecular probes into such hybrid materials as magnetic/conducting multifunctional materials or as dopant for organic conducting polymers.  相似文献   

3.
Calculated conductance through Aun–S–Bridge–S–Aun (Bridge = organic σ/π-system) constructs are compared to experimentally-determined magnetic exchange coupling parameters in a series of TpCum,MeZnSQ–Bridge–NN complexes, where TpCum,Me = hydro-tris(3-cumenyl-1-methylpyrazolyl)borate ancillary ligand, Zn = diamagnetic zinc(ii), SQ = semiquinone (S = 1/2), and NN = nitronylnitroxide radical (S = 1/2). We find that there is a nonlinear functional relationship between the biradical magnetic exchange coupling, JD→A, and the computed conductance, gmb. Although different bridge types (monomer vs. dimer) do not lie on the same JD→Avs. gmb, curve, there is a scale invariance between the monomeric and dimeric bridges which shows that the two data sets are related by a proportionate scaling of JD→A. For exchange and conductance mediated by a given bridge fragment, we find that the ratio of distance dependent decay constants for conductance (βg) and magnetic exchange coupling (βJ) does not equal unity, indicating that inherent differences in the tunneling energy gaps, Δε, and the bridge–bridge electronic coupling, HBB, are not directly transferrable properties as they relate to exchange and conductance. The results of these observations are described in valence bond terms, with resonance structure contributions to the ground state bridge wavefunction being different for SQ–Bridge–NN and Aun–S–Bridge–S–Aun systems.

Calculated conductance through Aun–S–Bridge–S–Aun constructs are compared to experimental magnetic exchange coupling parameters in TpCum,MeZn(SQ–Bridge–NN) complexes, where SQ = semiquinone radical and NN = nitronylnitroxide radical.  相似文献   

4.
Lanthanide metallocenophanes are an intriguing class of organometallic complexes that feature rare six-coordinate trigonal prismatic coordination environments of 4f elements with close intramolecular proximity to transition metal ions. Herein, we present a systematic study of the structural and magnetic properties of the ferrocenophanes, [LnFc3(THF)2Li2], of the late trivalent lanthanide ions (Ln = Gd (1), Ho (2), Er (3), Tm (4), Yb (5), Lu (6)). One major structural trend within this class of complexes is the increasing diferrocenyl (Fc2−) average twist angle with decreasing ionic radius (rion) of the central Ln ion, resulting in the largest average Fc2− twist angles for the Lu3+ compound 6. Such high sensitivity of the twist angle to changes in rion is unique to the here presented ferrocenophane complexes and likely due to the large trigonal plane separation enforced by the ligand (>3.2 Å). This geometry also allows the non-Kramers ion Ho3+ to exhibit slow magnetic relaxation in the absence of applied dc fields, rendering compound 2 a rare example of a Ho-based single-molecule magnet (SMM) with barriers to magnetization reversal (U) of 110–131 cm−1. In contrast, compounds featuring Ln ions with prolate electron density (3–5) don''t show slow magnetization dynamics under the same conditions. The observed trends in magnetic properties of 2–5 are supported by state-of-the-art ab initio calculations. Finally, the magneto-structural relationship of the trigonal prismatic Ho-[1]ferrocenophane motif was further investigated by axial ligand (THF in 2) exchange to yield [HoFc3(THF*)2Li2] (2-THF*) and [HoFc3(py)2Li2] (2-py) motifs. We find that larger average Fc2− twist angles (in 2-THF* and 2-py as compared to in 2) result in faster magnetic relaxation times at a given temperature.

Lanthanide ferrocenophanes are an intriguing class of organometallic complexes that feature rare six-coordinate trigonal prismatic coordination environments of 4f elements with close intramolecular proximity to iron ions.  相似文献   

5.
Summary The single-step electrochemical synthesis of neutral transition metal complexes of imidazole, pyrazole and their derivatives has been achieved at ambient temperature. The metal was oxidized in an Me2CO solution of the diazole to yield complexes of the general formula: [M(Iz)2] (where M = Co, Ni, Cu, Zn; Iz = imidazolate); [M(MeIz)2] (where M = Co, Ni, Cu, Zn; MeIz = 4-methylimidazolate); [M(PriIz)2] (where M = Co, Ni, Cu, Zn; PriIz = 2-isopropylimidazolate); [M(pyIz)n] (where M = CoIII, CuII, ZnII; pyIz = 2-(2-pyridyl)imidazolate); [M(Pz)n] (where M = CoIII, NiII, CuII, ZnII; Pz = pyrazolate); [M(ClPz)n] and [M(IPz)n] (where M = CoIII, NiII, CuII, ZnII; ClPz = 4-chloropyrazolate; IPz = 4-iodopyrazolate); [M(Me2Pz)n] (where M = CoII, CuI, ZnII; Me2Pz = 3,5-dimethylpyrazolate) and [M(BrMe2Pz)n] (where M = CoII, NiII, CuI, ZnII; BrMe2Pz = 3,5-dimethyl-4-bromopyrazolate). Vibrational spectra verified the presence of the anionic diazole and electronic spectra confirmed the stereochemistry about the metal centre. Variable temperature (360-90 K) magnetic measurements of the cobalt and copper chelates revealed strong antiferromagnetic interaction between the metal ions in the lattice. Data for the copper complexes were fitted to a Heisenberg (S= ) model for an infinite one-dimensional linear chain, yielding best fit values of J=–62––65cm–1 andg = 2.02–2.18. Data for the cobalt complexes were fitted to an Ising (S= ) model with J=–4.62––11.7cm–1 andg = 2.06–2.49.  相似文献   

6.
We report two macrocyclic ligands based on a 1,7-diaza-12-crown-4 platform functionalized with acetate (tO2DO2A2−) or piperidineacetamide (tO2DO2AMPip) pendant arms and a detailed characterization of the corresponding Mn(II) complexes. The X−ray structure of [Mn(tO2DO2A)(H2O)]·2H2O shows that the metal ion is coordinated by six donor atoms of the macrocyclic ligand and one water molecule, to result in seven-coordination. The Cu(II) analogue presents a distorted octahedral coordination environment. The protonation constants of the ligands and the stability constants of the complexes formed with Mn(II) and other biologically relevant metal ions (Mg(II), Ca(II), Cu(II) and Zn(II)) were determined using potentiometric titrations (I = 0.15 M NaCl, T = 25 °C). The conditional stabilities of Mn(II) complexes at pH 7.4 are comparable to those reported for the cyclen-based tDO2A2− ligand. The dissociation of the Mn(II) chelates were investigated by evaluating the rate constants of metal exchange reactions with Cu(II) under acidic conditions (I = 0.15 M NaCl, T = 25 °C). Dissociation of the [Mn(tO2DO2A)(H2O)] complex occurs through both proton− and metal−assisted pathways, while the [Mn(tO2DO2AMPip)(H2O)] analogue dissociates through spontaneous and proton-assisted mechanisms. The Mn(II) complex of tO2DO2A2− is remarkably inert with respect to its dissociation, while the amide analogue is significantly more labile. The presence of a water molecule coordinated to Mn(II) imparts relatively high relaxivities to the complexes. The parameters determining this key property were investigated using 17O NMR (Nuclear Magnetic Resonance) transverse relaxation rates and 1H nuclear magnetic relaxation dispersion (NMRD) profiles.  相似文献   

7.
The complex formation of PdII with tris[2-(dimethylamino)ethyl]amine (N(CH2CH2N(CH3)2)3, Me6tren) was investigated at 25° and ionic strength I = 1, using UV/VIS, potentiometric, and NMR measurements. Chloride, bromide, and thiocyanate were used as auxiliary ligands. The stability constant of [Pd(Me6tren)]2+ in various ionic media was obtained: log β([Pd(Me6tren)] = 30.5 (I = 1(NaCl)) and 30.8 (I = 1(NaBr)), as well as the formation constants of the mixed complexes [Pd(HMe6tren)X]2+ from [Pd(HMe6tren)(H2O)]3+:log K = 3.50 = Cl?) and 3.64 (X? = Br?) and [Pd(Me6tren)X]+ from [Pd(Me6tren)(H2O)]2+: log K = 2.6 (X? = Cl?), 2.8(Br?) and 5.57 (SCN?) at I = 1 (NaClO3). The above data, as well as the NMR measurements do not provide any evidence for the penta-coordination of PdII, proposed in some papers.  相似文献   

8.
Summary Dimethyl telluride, Me2Te, reacts with first row transition metal bis(chlorosulphates), M(SO3Cl)2(M=CrII, MnII, FeII, CoII, NiII, CuII) in MeCN resulting in the formation of compounds of the type [M(SO3Cl)2-(Me2Te)2]. These compounds are stable under N2 but decompose on exposure to moist air. The covalent nature of bonding of the SO3Cl group has been ascertained on the basis of a positive shift in 1 (A) vibration, splitting of the doubly degenerate (E) modes and low molar conductivity values. The magnetic moments and electronic spectra suggest an octahedral geometry for these compounds (except for the NiII complex where a tetragonal distortion is observed) where each SO3Cl group is bonded in a bidentate manner.  相似文献   

9.
Complexes of the type [M(tren)(abpt)](NO3)2(H2O)n (1–6) [M = MnII, FeII, CoII, CuII, ZnII (n = 2), NiII (n = 2.25), tren = tris(2-aminoethyl)amine, and abpt = 4-amino-3,5-bis(pyridin-2yl)-1,2,4 triazole] have been prepared. The bonding mode and overall geometry of the complexes have been deduced by elemental analyses, molar conductance values, spectral studies (obtained from FT-IR), 1H-n.m.r., electronic spectral analyses and magnetic susceptibility measurements. A detailed molecular structure of complex (4) has been determined by single X-ray crystallography.  相似文献   

10.
New magnetic metal complexes with organic radical ligands, [M(hfac)2(PyBTM)2] (M = NiII, CoII; hfac = hexafluoroacetylacetonato, PyBTM = (3,5-dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl radical), were prepared and their crystal structures, magnetic properties, and electronic structures were investigated. Metal ions in [M(hfac)2(PyBTM)2] constructed distorted octahedral coordination geometry, where the two PyBTM molecules ligated in the trans configuration. Magnetic investigation using a SQUID magnetometer revealed that χT increased with decreasing temperature from 300 K in the two complexes, indicating an efficient intramolecular ferromagnetic exchange interaction taking place between the spins on PyBTM and M with J/kB of 21.8 K and 11.8 K for [NiII(hfac)2(PyBTM)2] and [CoII(hfac)2(PyBTM)2]. The intramolecular ferromagnetic couplings in the two complexes could be explained by density functional theory calculations, and would be attributed to a nearly orthogonal relationship between the spin orbitals on PyBTM and the metal ions. These results demonstrate that pyridyl-containing triarylmethyl radicals are key building blocks for magnetic molecular materials with controllable/predictable magnetic interactions.  相似文献   

11.
Seeking to enrich the yet less explored field of scorpionate complexes bearing antioxidant properties, we, here, report on the synthesis, characterization and assessment of the antioxidant activity of new complexes derived from three scorpionate ligands. The interaction between the scorpionate ligands thallium(I) hydrotris(5-methyl-indazolyl)borate (TlTp4Bo,5Me), thallium(I) hydrotris(4,5-dihydro-2H-benzo[g]indazolyl)borate (TlTpa) and potassium hydrotris(3-tert-butyl- pyrazolyl)borate (KTptBu), and metal(II) chlorides, in dichloromethane at room temperature, produced a new family of complexes having the stoichiometric formula [M(Tp4Bo,5Me)2] (M = Cu, 1; Zn, 4; Cd, 7), [M(Tpa)2] (M = Cu, 2; Zn, 5; Cd, 8), [Cu(HpztBu)3Cl2] (3), [Zn(TptBu)Cl] (6) and [Cd(BptBu)(HpztBu)Cl] (9). The obtained metal complexes were characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance and elemental analysis, highlighting the total and partial hydrolysis of the scorpionate ligand TptBu during the synthesis of the Cu(II) complex 3 and the Cd(II) complex 9, respectively. An assessment of the antioxidant activity of the obtained metal complexes was performed through both enzymatic and non-enzymatic assays against 1,1-diphenyl-2-picryl- hydrazyl (DPPH·), 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), hydroxyl (HO·), nitric oxide (NO·), superoxide (O2) and peroxide (OOH·) radicals. In particular, the complex [Cu(Tpa)2]⋅0.5H2O (2) exhibited significant antioxidant activity, as good and specific activity against superoxide (O2−·), (IC50 values equal to 5.6 ± 0.2 μM) and might be identified as auspicious SOD-mimics (SOD = superoxide dismutase).  相似文献   

12.
Metal complexes of the flavonoid quercetin: antibacterial properties   总被引:8,自引:0,他引:8  
Two types of complexes were obtained when quercetin (L) was reacted with metal ions in EtOH. The compounds [M(L)Cl2(H2O)2] (M = MnII or CoII) and the semi-oxidized complexes [M(L)2CL2] · 2H2O (M = CdII or HgII) were characterized by elemental analysis., conductivity and magnetic susceptibility measurements, i.r., u.v.–vis. and e.p.r. spectroscopy. The (C=O) stretching mode located on the C ring of the ligand and the complexes remains in the same range, showing that this oxygen atom does not participate in coordination to the metal ions. Magnetic susceptibilities and e.p.r. spectra of powdered samples indicated that the monomeric form of the complexes in the solid state, and the paramagnetic nature of the CdII and HgII complexes is attributable to the semiquinone character of the ligand. The antibacterial activity of the metal complexes were tested against five bacterial strains and compared with penicillin activity.  相似文献   

13.
While alkylperoxomanganese(iii) (MnIII–OOR) intermediates are proposed in the catalytic cycles of several manganese-dependent enzymes, their characterization has proven to be a challenge due to their inherent thermal instability. Fundamental understanding of the structural and electronic properties of these important intermediates is limited to a series of complexes with thiolate-containing N4S ligands. These well-characterized complexes are metastable yet unreactive in the direct oxidation of organic substrates. Because the stability and reactivity of MnIII–OOR complexes are likely to be highly dependent on their local coordination environment, we have generated two new MnIII–OOR complexes using a new amide-containing N5 ligand. Using the 2-(bis((6-methylpyridin-2-yl)methyl)amino)-N-(quinolin-8-yl)acetamide (H6Medpaq) ligand, we generated the [MnIII(OOtBu)(6Medpaq)]OTf and [MnIII(OOCm)(6Medpaq)]OTf complexes through reaction of their MnII or MnIII precursors with tBuOOH and CmOOH, respectively. Both of the new MnIII–OOR complexes are stable at room-temperature (t1/2 = 5 and 8 days, respectively, at 298 K in CH3CN) and capable of reacting directly with phosphine substrates. The stability of these MnIII–OOR adducts render them amenable for detailed characterization, including by X-ray crystallography for [MnIII(OOCm)(6Medpaq)]OTf. Thermal decomposition studies support a decay pathway of the MnIII–OOR complexes by O–O bond homolysis. In contrast, direct reaction of [MnIII(OOCm)(6Medpaq)]+ with PPh3 provided evidence of heterolytic cleavage of the O–O bond. These studies reveal that both the stability and chemical reactivity of MnIII–OOR complexes can be tuned by the local coordination sphere.

A pair of room-temperature-stable MnIII–alkylperoxo complexes were characterized and shown to oxidize PPh3. Thermal decomposition studies provide evidence of both homolysis and heterolysis of the MnIII–alkylperoxo O–O bond.  相似文献   

14.
Asymmetrical macrocyclic complexes of MnII, CoII, NiII, CuII and ZnII have been synthesized by the template process using bis(benzil)ethylenediamine as precursor. Bis(benzil)ethylenediamine reacts with transition metal chlorides and trimethoprim in a 1:1:1 molar ratio in methanol to give several solid metal complexes of the general composition [M(L)X2] (M = MnII, CoII, NiII, CuII and ZnII, L = ligand and X = Cl?). They were characterized by physicochemical and spectroscopic techniques. Based on analytical, spectral and magnetic moments, all the complexes are identified as distorted octahedral structures. All the complexes are of the [M(L)X2] type. The shifts of the ν(CN) (azomethine) stretches have been monitored. To find out the donor sites of the ligands, the activity data show that the metal complexes are more potent than the parent ligand. The [M(L)X2] complexes showed a broad spectrum of antimicrobial activity in vitro against both gram-positive and gram-negative human pathogenic bacterial isolates and the antimicrobial spectrum enhanced only with a combination of metal chlorides and trimethoprim complex. From the results it is imperative that the synthesized macrocyclic [M(L)X2] complexes exhibit potent broad spectrum antibacterial activity.  相似文献   

15.
A series of heterometallic carboxylate 1D polymers of the general formula [LnIIICd2(piv)7(H2O)2]n·nMeCN (LnIII = Sm (1), Eu (2), Tb (3), Dy (4), Ho (5), Er (6), Yb (7); piv = anion of trimethylacetic acid) was synthesized and structurally characterized. The use of CdII instead of ZnII under similar synthetic conditions resulted in the formation of 1D polymers, in contrast to molecular trinuclear complexes with LnIIIZn2 cores. All complexes 1–7 are isostructural. The luminescent emission and excitation spectra for 2–4 have been studied, the luminescence decay kinetics for 2 and 3 was measured. Magnetic properties of the complexes 3–5 and 7 have been studied; 4 and 7 exhibited the properties of field-induced single-molecule magnets in an applied external magnetic field. Magnetic properties of 4 and 7 were modelled using results of SA-CASSCF/SO-RASSI calculations and SINGLE_ANISO procedure. Based on the analysis of the magnetization relaxation and the results of ab initio calculations, it was found that relaxation in 4 predominantly occurred by the sum of the Raman and QTM mechanisms, and by the sum of the direct and Raman mechanisms in the case of 7.  相似文献   

16.
Summary The Mn(PPO)nX2 complexes (where PPO is 2,5-diphenyloxazole, n = 1, 2 or 3 and X = Cl, Br, I or SCN) have been prepared from the corresponding metal salt with the ligand in methanolic solution or with the molten ligand in the appropriate reactant ratio and studied by chemical analysis, electronic and i.r. spectroscopy, magnetic and molar conductivity values at 25°. The complexes are generally nonconducting in DMF; they are high spin and hexacoordinated. The Mn(PPO)X2 complexes are high polymers with both ligand and anions bridging. The Mn(PPO)2X2 species are polymeric with PPO monodentate N-bonded and halogens and thiocyanates bridging bonded; the Mn(PPO)3X2 derivatives have monodentate N-bonded ligands whereas the halogens and thiocyanates are terminal and bridging, respectively.  相似文献   

17.
Reaction of 2,2′-bipyridine (2,2′-bipy) or 1,10-phenantroline (phen) with [Mn(Piv)2(EtOH)]n led to the formation of binuclear complexes [Mn2(Piv)4L2] (L = 2,2′-bipy (1), phen (2); Piv is the anion of pivalic acid). Oxidation of 1 or 2 by air oxygen resulted in the formation of tetranuclear MnII/III complexes [Mn4O2(Piv)6L2] (L = 2,2′-bipy (3), phen (4)). The hexanuclear complex [Mn6(OH)2(Piv)10(pym)4] (5) was formed in the reaction of [Mn(Piv)2(EtOH)]n with pyrimidine (pym), while oxidation of 5 produced the coordination polymer [Mn6O2(Piv)10(pym)2]n (6). Use of pyrazine (pz) instead of pyrimidine led to the 2D-coordination polymer [Mn4(OH)(Piv)72-pz)2]n (7). Interaction of [Mn(Piv)2(EtOH)]n with FeCl3 resulted in the formation of the hexanuclear complex [MnII4FeIII2O2(Piv)10(MeCN)2(HPiv)2] (8). The reactions of [MnFe2O(OAc)6(H2O)3] with 4,4′-bipyridine (4,4′-bipy) or trans-1,2-(4-pyridyl)ethylene (bpe) led to the formation of 1D-polymers [MnFe2O(OAc)6L2]n·2nDMF, where L = 4,4′-bipy (9·2DMF), bpe (10·2DMF) and [MnFe2O(OAc)6(bpe)(DMF)]n·3.5nDMF (11·3.5DMF). All complexes were characterized by single-crystal X-ray diffraction. Desolvation of 11·3.5DMF led to a collapse of the porous crystal lattice that was confirmed by PXRD and N2 sorption measurements, while alcohol adsorption led to porous structure restoration. Weak antiferromagnetic exchange was found in the case of binuclear MnII complexes (JMn-Mn = −1.03 cm−1 for 1 and 2). According to magnetic data analysis (JMn-Mn = −(2.69 ÷ 0.42) cm−1) and DFT calculations (JMn-Mn = −(6.9 ÷ 0.9) cm−1) weak antiferromagnetic coupling between MnII ions also occurred in the tetranuclear {Mn4(OH)(Piv)7} unit of the 2D polymer 7. In contrast, strong antiferromagnetic coupling was found in oxo-bridged trinuclear fragment {MnFe2O(OAc)6} in 11·3.5DMF (JFe-Fe = −57.8 cm−1, JFe-Mn = −20.12 cm−1).  相似文献   

18.
The crystal structures of two new isomorphous transition metal squarato complexes [MII(C4O4)(dmso)2(OH2)2] [MII = CoII (3d7), MnII (3d5); dmso = dimethylsulfoxide] and their magnetic properties are reported. The compounds feature two symmetrically independent chains, in which 1,3‐bridging squarato ligands connect cations in distorted octahedral surroundings of pseudo‐symmetry D4h. From an equimolar solution of CoCl2 · 6H2O and MnCl2 · 2H2O a mixed‐metal coordination polymer crystallizes; it represents a solid solution and adopts the same structure as the corresponding monometallic compounds. The results of the diffraction experiment unambiguously proof the presence of both CoII and MnII cations in either independent site albeit no precise ratio between the metal cations involved may be deduced from these findings. The difference in the magnetic properties between CoII and MnII cations in the given ligand field has allowed us to establish their ratio in the solid solution more reliably than by X‐ray diffraction: Accounting for ligand field potential and spin‐orbit coupling of CoII and regarding MnII as a pure spin system, the calculations yielded a fraction of 73 % CoII in the mixed‐metal polymer. With respect to superexchange effects only weak antiferromagnetic interactions have been detected for the three coordination polymers.  相似文献   

19.
Spin exchange between different chemical environments is an important observable for characterizing chemical exchange kinetics in various contexts, including protein folding, chelation chemistry, and host–guest interactions. Such spins experience effective spin–spin relaxation rate, R2,eff, that typically shows a dispersive behavior which requires detailed analysis. Here, we describe a class of highly simplified R2,eff behavior by relying on hyperpolarized 129Xe as a freely exchanging ligand reporter. It provides large chemical shift separations that yield reduced expressions of both the Swift–Connick and the Carver–Richards treatment of exchange-induced relaxation. Despite observing a diamagnetic system, R2,eff is dominated by large Larmor frequency jumps and thus allows detection of otherwise inaccessible analyte concentrations with a single spin echo train (only 0.01% of the overall hyperpolarized spins need to be transiently bound to the molecule). The two Xe hosts cryptophane-A monoacid (CrA-ma) and cucurbit[6]uril (CB6) represent two exemplary families of container molecules (the latter one also serving as drug delivery vehicles) that act as highly efficient phase shifters for which we observed unprecedented exchange-induced relaxivity r2 (up to 866 s−1 mM−1). By including methods of spatial encoding, multiple data points can be collected simultaneously to isolate the exchange contribution and determine the effective exchange rate in partially occupied binding sites with a single delivery of hyperpolarized nuclei. The relaxivity is directly related to the guest turnover in these systems and temperature-dependent measurements yield an activation energy of EA = 41 kJ mol−1 for Xe@CrA-ma from simple relaxometry analysis. The concept is transferable to many applications where Xe is known to exhibit large chemical shifts.

Localized detection of hyperpolarized, exchanging Xe spins enables quantitative insights at unprecedented sensitivity for characterizing chemical exchange kinetics in various contexts such as host–guest interactions and displacement assays.  相似文献   

20.
Complexes of the Lewis base-free cations (MeBDI)Mg+ and (tBuBDI)Mg+ with Ph–X ligands (X = F, Cl, Br, I) have been studied (MeBDI = HC[C(Me)N-DIPP]2 and tBuBDI = HC[C(tBu)N-DIPP]2; DIPP = 2,6-diisopropylphenyl). For the smaller β-diketiminate ligand (MeBDI) only complexes with PhF could be isolated. Heavier Ph–X ligands could not compete with bonding of Mg to the weakly coordinating anion B(C6F5)4. For the cations with the bulkier tBuBDI ligand, the full series of halobenzene complexes was structurally characterized. Crystal structures show that the Mg⋯X–Ph angle strongly decreases with the size of X: F 139.1°, Cl 101.4°, Br 97.7°, I 95.1°. This trend, which is supported by DFT calculations, can be explained with the σ-hole which increases from F to I. Charge calculation and Atoms-In-Molecules analyses show that Mg⋯F–Ph bonding originates from electrostatic attraction between Mg2+ and the very polar Cδ+–Fδ bond. For the heavier halobenzenes, polarization of the halogen atom becomes increasingly important (Cl < Br < I). Complexation with Mg leads in all cases to significant Ph–X bond activation and elongation. This unusual coordination of halogenated species to early main group metals is therefore relevant to C–X bond breaking.

Complexes of a highly Lewis acidic Mg cation and the full series of Ph–X (X = F, Cl, Br, I) have been structurally characterized. The Mg⋯X–Ph angle decreases with halogen size on account of the growing halogen σ-hole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号