首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermodynamic investigations relevant to hydrogen atom transfer by the high-valent iron imido complex [LMesFe[triple bond]NAd]OTf have been undertaken. The complex is found to be weakly oxidizing by cyclic voltammetry (E1/2 = -0.98 V vs Cp2Fe+/Cp2Fe in MeCN). A combination of experimental and computational studies has been used to determine the acidity of LMesFe-N(H)Ad+ (pKa = 37 in MeCN), allowing the N-H BDFE (88(5) kcal/mol) to be calculated from a thermodynamic cycle. Consistent with this value, [LMesFe[triple bond]NAd]OTf reacts with 9,10-dihydroanthracene (C-H BDE = 78(1) kcal/mol) to form anthracene.  相似文献   

2.
A palladium-catalyzed atom transfer cyclization of unactivated alkyl iodide has been developed. A radical chain mechanism has been proposed for this transformation, which might not involve an alkylpalladium intermediate.  相似文献   

3.
The reduction of ketones and olefins by hydrogen transfer from isopropanol is catalyzed by tertiary phosphine complexes of rhodium and iridium. The influence of the nature of the ligands and of the reaction conditions on the catalytic activity has been investigated. The reduction of the carbonyl group in the presence of olefins is also reported.  相似文献   

4.
Described here are oxidations of alkylaromatic compounds by dimanganese mu-oxo and mu-hydroxo dimers [(phen)(2)Mn(IV)(mu-O)(2)Mn(IV)(phen)(2)](4+) ([Mn(2)(O)(2)](4+)), [(phen)(2)Mn(IV)(mu-O)(2)Mn(III)(phen)(2)](3+) ([Mn(2)(O)(2)](3+)), and [(phen)(2)Mn(III)(mu-O)(mu-OH)Mn(III)(phen)(2)](3+) ([Mn(2)(O)(OH)](3+)). Dihydroanthracene, xanthene, and fluorene are oxidized by [Mn(2)(O)(2)](3+) to give anthracene, bixanthenyl, and bifluorenyl, respectively. The manganese product is the bis(hydroxide) dimer, [(phen)(2)Mn(III)(mu-OH)(2)Mn(II)(phen)(2)](3+) ([Mn(2)(OH)(2)](3+)). Global analysis of the UV/vis spectral kinetic data shows a consecutive reaction with buildup and decay of [Mn(2)(O)(OH)](3+) as an intermediate. The kinetics and products indicate a mechanism of hydrogen atom transfers from the substrates to oxo groups of [Mn(2)(O)(2)](3+) and [Mn(2)(O)(OH)](3+). [Mn(2)(O)(2)](4+) is a much stronger oxidant, converting toluene to tolyl-phenylmethanes and naphthalene to binaphthyl. Kinetic and mechanistic data indicate a mechanism of initial preequilibrium electron transfer for p-methoxytoluene and naphthalenes because, for instance, the reactions are inhibited by addition of [Mn(2)(O)(2)](3+). The oxidation of toluene by [Mn(2)(O)(2)](4+), however, is not inhibited by [Mn(2)(O)(2)](3+). Oxidation of a mixture of C(6)H(5)CH(3) and C(6)H(5)CD(3) shows a kinetic isotope effect of 4.3 +/- 0.8, consistent with C-H bond cleavage in the rate-determining step. The data indicate a mechanism of initial hydride transfer from toluene to [Mn(2)(O)(2)](4+). Thus, oxidations by manganese oxo dimers occur by three different mechanisms: hydrogen atom transfer, electron transfer, and hydride transfer. The thermodynamics of e(-), H(*), and H(-) transfers have been determined from redox potential and pK(a) measurements. For a particular oxidant and a particular substrate, the choice of mechanism is influenced both by the thermochemistry and by the intrinsic barriers. Rate constants for hydrogen atom abstraction by [Mn(2)(O)(2)](3+) and [Mn(2)(O)(OH)](3+) are consistent with their 79 and 75 kcal mol(-)(1) affinities for H(*). In the oxidation of p-methoxytoluene by [Mn(2)(O)(2)](4+), hydride transfer is thermochemically 24 kcal mol(-)(1) more facile than electron transfer; yet the latter mechanism is preferred. Thus, electron transfer has a substantially smaller intrinsic barrier than does hydride transfer in this system.  相似文献   

5.
6.
Oxidation of cyclobutanol by aqueous Fe(IV) generates cyclobutanone in approximately 70% yield. In addition to this two-electron process, a smaller fraction of the reaction takes place by a one-electron process, believed to yield ring-opened products. A series of aliphatic alcohols, aldehydes, and ethers also react in parallel hydrogen atom and hydride transfer reactions, but acetone and acetonitrile react by hydrogen atom transfer only. Precise rate constants for each pathway for a number of substrates were obtained from a combination of detailed kinetics and product studies and kinetic simulations. Solvent kinetic isotope effect for the self-decay of Fe(IV), kH2O/kD2O = 2.8, is consistent with hydrogen atom abstraction from water.  相似文献   

7.
The chiral Ir catalytic system generated in situ from iridium hydride complex and chiral diaminodiphosphine ligand was employed in asymmetric transfer hydrogenation of aromatic ketones to give the corresponding optically active alcohols, with up to 99% ee in high yield were obtained even when the substrate-to-catalyst molar ratio reached 10000:1.  相似文献   

8.
In the literature, iron-oxo complexes have been isolated and their hydrogen atom transfer (HAT) reactions have been studied in detail. Iron-imido complexes have been isolated more recently, and the community needs experimental evaluations of the mechanism of HAT from late-metal imido species. We report a mechanistic study of HAT by an isolable iron(III) imido complex, L(Me)FeNAd (L(Me) = bulky β-diketiminate ligand, 2,4-bis(2,6-diisopropylphenylimido)pentyl; Ad = 1-adamantyl). HAT is preceded by binding of tert-butylpyridine ((t)Bupy) to form a reactive four-coordinate intermediate L(Me)Fe(NAd)((t)Bupy), as shown by equilibrium and kinetic studies. In the HAT step, very large substrate H/D kinetic isotope effects around 100 are consistent with C-H bond cleavage. The elementary HAT rate constant is increased by electron-donating groups on the pyridine additive, and by a more polar medium. When combined with the faster rate of HAT from indene versus cyclohexadiene, this trend is consistent with H(+) transfer character in the HAT transition state. The increase in HAT rate in the presence of (t)Bupy may be explained by a combination of electronic (weaker Fe=N π-bonding) and thermodynamic (more exothermic HAT) effects. Most importantly, HAT by these imido complexes has a strong dependence on the size of the hydrocarbon substrate. This selectivity comes from steric hindrance by the spectator ligands, a strategy that has promise for controlling the regioselectivity of these C-H bond activation reactions.  相似文献   

9.
Insertion of CS2 into one of the Ir-H bonds of [Ir(H)5(PCy3)2] takes place to afford the dihydrido dithioformate complex cis-[Ir(H)2(eta2-S2CH)(PCy3)2] accompanied by the elimination of H2. Protonation of the dithioformate complex using HBF4.Et2O gives cis-[Ir(H)(eta2-H2)(eta2-S2CH)(PCy3)2][BF4] wherein the H atom undergoes site exchange between the dihydrogen and the hydride ligands. The dynamics was found to be so extremely rapid with respect to the NMR time scale that the barrier to exchange could not be measured. Partial deuteration of the hydride ligands resulted in a J(H,D) of 6.5 and 7.7 Hz for the H2D and the HD2 isotopomers of cis-[Ir(H)(eta2-H2)(eta2-S2CH)(PCy3)2][BF4], respectively. The H-H distance (d(HH)) for this complex has been calculated to be 1.05 A, which can be categorized under the class of elongated dihydrogen complexes. The cis-[Ir(H)(eta2-H2)(eta2-S2CH)(PCy3)2][BF4] complex undergoes substitution of the bound H2 moiety with CH(3)CN and CO resulting in new hydride derivatives, cis-[Ir(H)(L)(eta2-S2CH)(PCy3)2][BF4] (L = CH3CN, CO). Reaction of cis-[Ir(H)2(eta2-S2CH)(PCy3)2] with electrophilic reagents such as MeOTf and Me3SiOTf afforded a new hydride aquo complex cis-[Ir(H)(H2O)(eta2-S2CH)(PCy3)2][OTf] via the elimination of CH4 and Me3SiH, respectively, followed by the binding of a water molecule (present in trace quantities in the solvent) to the iridium center. The X-ray crystal structures of cis-[Ir(H)2(eta2-S2CH)(PCy3)2] and cis-[Ir(H)(H2O)(eta2-S2CH)(PCy3)2][OTf] have been determined.  相似文献   

10.
(S)-QUINAP reacted with [Ir(cod)Cl]2 to form a new chelating iridium complex in 77.4% yield. The iridium complex was proved to be a highly efficient catalyst for the enantioselective hydrogenation of olefins. 33.4-95.1% ee were obtained for the hydrogenation of unfunctionalized olefins and 90.8-96.1% ee were obtained for functionalized olefins.  相似文献   

11.
Proton-coupled electron transfer (PCET), an essential process in nature with a well-known example of photosynthesis, has recently been employed in metal complexes to improve the energy conversion efficiency; however, a profound understanding of the mechanism of PCET in metal complexes is still lacking. In this study, we synthesized cyclometalated Ir complexes strategically designed to exploit the excited-state intramolecular proton transfer (ESIPT) of the ancillary ligand and studied their photoinduced PCET in both aprotic and protic solvent environments using femtosecond transient absorption spectroscopy and density functional theory (DFT) and time-dependent DFT calculations. The data reveal solvent-modulated PCET, where charge transfer follows proton transfer in an aprotic solvent and the temporal order of charge transfer and proton transfer is reversed in a protic solvent. In the former case, ESIPT from the enol form to the keto form, which precedes the charge transfer from Ir to the ESIPT ligand, improves the efficiency of metal-to-ligand charge transfer. This finding demonstrates the potential to control the PCET reaction in the desired direction and the efficiency of charge transfer by simply perturbing the external hydrogen-bonding network with the solvent.

The iridium complex with an ESIPT ligand shows solvent-modulated proton-coupled electron transfer, in which the temporal order of proton transfer and charge transfer is altered by the solvent environment.  相似文献   

12.
Unlike what has been theoretically proposed for ammonia oxidation with hydrogen peroxide, trimethylamine oxidation occurs with a concerted mechanism, which is favored even when an explicit water molecule is added or continuum solvent (water) is simulated.  相似文献   

13.
A new β-diketiminate ligand with 2,4,6-tri(phenyl)phenyl N-substituents provides protective bulk around the metal without exposing any weak C-H bonds. This ligand improves the stability of reactive iron(III) imido complexes with Fe═NAd and Fe═NMes functional groups (Ad = 1-adamantyl; Mes = mesityl). The new ligand gives iron(III) imido complexes that are significantly more reactive toward 1,4-cyclohexadiene than the previously reported 2,6-diisopropylphenyl diketiminate variants. Analysis of X-ray crystal structures implicates Fe═N-C bending, a longer Fe═N bond, and greater access to the metal as potential reasons for the increase in C-H bond activation rates.  相似文献   

14.
The thermolysis of hexamethylsilirane in the presence of cis- and trans-4-octene, cyclooctene, propenyltrimethylsilane and trimethylethylethylene resulted in dimethylsilylene transfer and formation of the respective silacyclopropanes. In contrast, silacyclopentane derivatives were formed when such thermolysis was carried out in the presence of styrene and α-methylstyrene. This is believed to be a result of the interception of the intermediate diradical from hexamethylsilirane ring opening by the styrene.  相似文献   

15.
Cu(I) complexes containing trispyrazolylborate ligands efficiently catalyze the atom transfer radical addition (ATRA) of polyhalogenated alkanes to various olefins under mild conditions. The catalytic activity is enhanced when bulky and electron donating Tpx ligands are employed. Kinetic data have allowed the proposal of a mechanistic interpretation that includes a Cu(II) pentacoordinated species that regulates the catalytic cycle.  相似文献   

16.
17.
A regioselective Cu(I)-catalyzed carbocyanation of non-polarized trisubstituted olefins 1 has been achieved by employing chlorinated cyanides 2 as starting materials. The present reaction gives the carbocyanated product 3 through radical-based 1,3-transfer of CN. Consequently, two different carbon units, cyano and chlorocyanomethyl groups, are introduced into the highly substituted olefins, generating consecutive quaternary and tertiary carbons. Since both of the attached carbon units can be used as handles for further synthetic elaborations, the present transformation offers a new synthetic methodology for rapid construction of architecturally complex carboskeletons.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号