首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The first non-enzymatic redox deracemization method using molecular oxygen as the terminal oxidant has been described. The one-pot deracemization of β,γ-alkynyl α-amino esters consisted of a copper-catalyzed aerobic oxidation and chiral phosphoric acid-catalyzed asymmetric transfer hydrogenation with excellent functional group compatibility. By using benzothiazoline as the reducing reagent, an exclusive chemoselectivity at the C Created by potrace 1.16, written by Peter Selinger 2001-2019 N bond over the C Created by potrace 1.16, written by Peter Selinger 2001-2019 C bond was achieved, allowing for efficient deracemization of a series of α-amino esters bearing diverse α-alkynyl substituent patterns. The origins of chemo- and enantio-selectivities were elucidated by experimental and computational mechanistic investigation. The generality of the strategy is further demonstrated by efficient deracemization of β,γ-alkenyl α-amino esters.

A one-pot deracemization of β,γ-alkynyl α-amino esters consisting of an aerobic oxidation and chiral phosphoric acid-catalyzed asymmetric transfer hydrogenation has been described.  相似文献   

2.
Intramolecular vicinal Frustrated Lewis Pairs (FLPs) have played a significant role in the activation of small molecules, and their stabilities and reactivities are found to strongly depend on the nature of the bridging units. This work reports a new carborane based FLP, 1-PPh2-2-BPh2-1,2-C2B10H10 (2), which reacts with an equimolar amount of p-R2NC6H4C Created by potrace 1.16, written by Peter Selinger 2001-2019 CH (R = Me, Et, Ph) at room temperature to give C Created by potrace 1.16, written by Peter Selinger 2001-2019 C triple bond addition products 1,2-[PPh2C(R2NC6H4) Created by potrace 1.16, written by Peter Selinger 2001-2019 CHBPh2]-1,2-C2B10H10 (3) in high yields. Compounds 3 react further with two equiv. of p-R2NC6H4C Created by potrace 1.16, written by Peter Selinger 2001-2019 CH (R = Me, Et) at 60–70 °C to give unprecedented stereoselective tri-insertion products, 3,3a,6,6a-tetrahydronaphtho[1,8a-b]borole tricycles (4), in which one of the aryl rings from arylacetylene moieties has been dearomatized with the formation of four stereocenters including one quaternary carbon center. It is noted that the phosphine unit functions as a catalyst during the reactions. After trapping and structural characterization of a key intermediate, a reaction mechanism is proposed, involving sequential alkyne insertion and 1,2-boryl migration.

A carborane based frustrated Lewis pair enables tri-insertion with dearomatization of arylalkynes, forming unprecedented products, borole tricycles, with the construction of four stereocenters including one quaternary carbon center in one process.  相似文献   

3.
An attempt to achieve heterocyclic cycloadducts of Sc3N@Ih-C80via reaction with Ph2C Created by potrace 1.16, written by Peter Selinger 2001-2019 O, PhC Created by potrace 1.16, written by Peter Selinger 2001-2019 CPh or PhC Created by potrace 1.16, written by Peter Selinger 2001-2019 N in the presence of tetrabutylammonium hydroxide (TBAOH) stored in CH3OH led to the formation of the unexpected bismethoxyl adducts of Sc3N@Ih-C80 (1 and 2). Further studies reveal that TBAOH in CH3OH can boost the CH3O addition efficiently, regardless of the presence of other reagents. Single-crystal X-ray diffraction results firmly assign the molecular structures of 1 and 2 as respective 1,4- and 1,2-bismethoxyl adducts, and reveal unusual relationships between the internal Sc3N cluster and the addition modes, in addition to the unusual packing mode in view of the orientation of the methoxyl groups. Electrochemical results demonstrate smaller electrochemical gaps for 1 and 2, relative to that of Sc3N@Ih-C80, confirming their better electroactive properties. Finally, a plausible reaction mechanism involving anion addition and a radical reaction was proposed, presenting new insights into the highly selective reactions between the methoxyl anion and metallofullerenes. 1 and 2 represent the first examples of methoxyl derivatives of metallofullerenes. This work not only presents a novel and facile strategy for the controllable synthesis of alkoxylated metallofullerene derivatives, but also provides new non-cycloadducts for the potential applications of EMFs.

An attempt to achieve heterocyclic cycloadducts of Sc3N@Ih-C80via reaction with Ph2C Created by potrace 1.16, written by Peter Selinger 2001-2019 O, PhC Created by potrace 1.16, written by Peter Selinger 2001-2019 CPh or PhC Created by potrace 1.16, written by Peter Selinger 2001-2019 N in the presence of tetrabutylammonium hydroxide (TBAOH) stored in CH3OH led to the formation of the unexpected bismethoxyl adducts of Sc3N@Ih-C80 (1 and 2).  相似文献   

4.
The isoelectronic replacement of C Created by potrace 1.16, written by Peter Selinger 2001-2019 C bonds with B Created by potrace 1.16, written by Peter Selinger 2001-2019 N+ bonds in polycyclic aromatic hydrocarbons (PAHs) is a widely used tool to prepare novel optoelectronic materials. Far less well explored are corresponding B,O-doped PAHs, although they have a similarly high application potential. We herein report on the modular synthesis of B,N- and B,O-doped PAHs through the [Au(PPh3)NTf2]-catalyzed 6-endo-dig cyclization of BN–H and BO–H bonds across suitably positioned C Created by potrace 1.16, written by Peter Selinger 2001-2019 C bonds in the key step. Readily available, easy-to-handle o-alkynylaryl boronic and borinic acids serve as starting materials, which are either cyclized directly or first converted into the corresponding aminoboranes and then cyclized. The reaction even tolerates bulky mesityl substituents on boron, which later kinetically protect the formed B,N/O-PAHs from hydrolysis or oxidation. Our approach is also applicable for the synthesis of rare doubly B,N/O-doped PAHs. Specifically, we prepared 1,2-B,E-naphthalenes and -anthracenes, 1,5-B2-2,6-E2-anthracenes (E = N, O) as well as B,O2-containing and unprecedented B,N,O-containing phenalenyls. Selected examples of these compounds have been structurally characterized by X-ray crystallography; their optoelectronic properties have been studied by cyclic voltammetry, electron spectroscopy, and quantum-chemical calculations. Using a new unsubstituted (B,O)2-perylene as the substrate for late-stage functionalization, we finally show that the introduction of two pinacolatoboryl (Bpin) substituents is possible in high yield and with perfect regioselectivity via an Ir-catalyzed C–H borylation approach.

Singly and doubly B,E-doped PAHs were synthesized using a protocol that starts from easy-to-handle boronic and borinic acids and offers the possibility to choose between the preparation of B,O- and B,N-PAHs in the final reaction step.  相似文献   

5.
The unique reactivity of the acetylenic unit in DMSO gives rise to ubiquitous synthetic methods. We theoretically consider CaC2 solubility and protolysis in DMSO and formulate a strategy for CaC2 activation in solution-phase chemical transformations. For this, we use a new strategy for the modeling of ionic compounds in strongly coordinating solvents combining Born–Oppenheimer molecular dynamics with the DFTB3-D3(BJ) Hamiltonian and static DFT computations at the PBE0-D3(BJ)/pob-TZVP-gCP level. We modeled the thermodynamics of CaC2 protolysis under ambient conditions, taking into account its known heterogeneity and considering three polymorphs of CaC2. We give a theoretical basis for the existence of the elusive intermediate HC Created by potrace 1.16, written by Peter Selinger 2001-2019 C–Ca–OH and show that CaC2 insolubility in DMSO is of thermodynamic nature. We confirm the unique role of water and specific properties of DMSO in CaC2 activation and explain how the activation is realized. The proposed strategy for the utilization of CaC2 in sustainable organic synthesis is outlined.

Constructing the carbon framework from a carbon-neutral source: a new computational model for ionic pairs in solution based on DFTB MD and DFT helps to propose a strategy for sustainable organic transformations with solid CaC2.  相似文献   

6.
The reactivity of the terminal zirconium(iv) oxo complex, O Created by potrace 1.16, written by Peter Selinger 2001-2019 Zr(MesNPiPr2)3CoCNtBu (2), is explored, revealing unique redox activity imparted by the pendent redox active cobalt(i) center. Oxo complex 2 can be chemically reduced using Na/Hg or Ph3C to afford the ZrIV/Co0 complexes [(μ-Na)OZr(MesNPiPr2)3CoCNtBu]2 (3) and Ph3COZr(MesNPiPr2)3CoCNtBu (4), respectively. Based on the cyclic voltammogram of 2, Ph3˙ should not be sufficiently reducing to achieve the chemical reduction of 2, but sufficient driving force for the reaction is provided by the nucleophilicity of the terminal oxo fragment and its affinity to bind Ph3C+. Accordingly, 2 reacts readily with [Ph3C][BPh4] and Ph3CCl to afford [Ph3COZr(MesNPiPr2)3CoCNtBu][BPh4] ([5][BPh4]) and Ph3COZr(MesNPiPr2)3CoCl (6), respectively. The chemical oxidation of 2 is also investigated, revealing that oxidation of 2 is accompanied by immediate hydrogen atom abstraction to afford the hydroxide complex [HOZr(MesNPiPr2)3CoCNtBu]+ ([9]+). Thus it is posited that the transient [OZr(MesNPiPr2)3CoCNtBu]+ [2]+ cation generated upon oxidation combines the basicity of a nucleophilic early metal oxo fragment with the oxidizing power of the appended cobalt center to facilitate H-atom abstraction.

Bimetallic cooperativity is demonstrated with a Co/Zr complex featuring both nucleophilic Zr(iv) oxo and redox active Co sites.  相似文献   

7.
Treatment of the new methanediide–methanide complex [Dy(SCS)(SCSH)(THF)] (1Dy, SCS = {C(PPh2S)2}2−) with alkali metal alkyls and auxillary ethers produces the bis-methanediide complexes [Dy(SCS)2][Dy(SCS)2(K(DME)2)2] (2Dy), [Dy(SCS)2][Na(DME)3] (3Dy) and [Dy(SCS)2][K(2,2,2-cryptand)] (4Dy). For further comparisons, the bis-methanediide complex [Dy(NCN)2][K(DB18C6)(THF)(toluene)] (5Dy, NCN = {C(PPh2NSiMe3)2}2−, DB18C6 = dibenzo-18-crown-6 ether) was prepared. Magnetic susceptibility experiments reveal slow relaxation of the magnetisation for 2Dy–5Dy, with open magnetic hysteresis up to 14, 12, 15, and 12 K, respectively (∼14 Oe s−1). Fitting the alternating current magnetic susceptibility data for 2Dy–5Dy gives energy barriers to magnetic relaxation (Ueff) of 1069(129)/1160(21), 1015(32), 1109(70), and 757(39) K, respectively, thus 2Dy–4Dy join a privileged group of SMMs with Ueff values of ∼1000 K and greater with magnetic hysteresis at temperatures >10 K. These structurally similar Dy-components permit systematic correlation of the effects of axial and equatorial ligand fields on single-molecule magnet performance. For 2Dy–4Dy, the Dy-components can be grouped into 2Dy–cation/4Dy and 2Dy–anion/3Dy, where the former have almost linear C Created by potrace 1.16, written by Peter Selinger 2001-2019 Dy Created by potrace 1.16, written by Peter Selinger 2001-2019 C units with short average Dy Created by potrace 1.16, written by Peter Selinger 2001-2019 C distances, and the latter have more bent C Created by potrace 1.16, written by Peter Selinger 2001-2019 Dy Created by potrace 1.16, written by Peter Selinger 2001-2019 C units with longer average Dy Created by potrace 1.16, written by Peter Selinger 2001-2019 C bonds. Both Ueff and hysteresis temperature are superior for the former pair compared to the latter pair as predicted, supporting the hypothesis that a more linear axial ligand field with shorter M–L distances produces enhanced SMM properties. Comparison with 5Dy demonstrates unusually clear-cut examples of: (i) weakening the equatorial ligand field results in enhancement of the SMM performance of a monometallic system; (ii) a positive correlation between Ueff barrier and axial linearity in structurally comparable systems.

Studies on equatorial donor and C Created by potrace 1.16, written by Peter Selinger 2001-2019 Dy Created by potrace 1.16, written by Peter Selinger 2001-2019 C angle variation effects on energy barriers to the slow relaxation of magnetisation are reported.  相似文献   

8.
The reaction of [AnCl(NR2)3] (An = U, Th, R = SiMe3) with in situ generated lithium-3,3-diphenylcyclopropene results in the formation of [{(NR2)3}An(CH Created by potrace 1.16, written by Peter Selinger 2001-2019 C Created by potrace 1.16, written by Peter Selinger 2001-2019 CPh2)] (An = U, 1; Th, 2) in good yields after work-up. Deprotonation of 1 or 2 with LDA/2.2.2-cryptand results in formation of the anionic allenylidenes, [Li(2.2.2-cryptand)][{(NR2)3}An(CCCPh2)] (An = U, 3; Th, 4). The calculated 13C NMR chemical shifts of the Cα, Cβ, and Cγ nuclei in 2 and 4 nicely reproduce the experimentally assigned order, and exhibit a characteristic spin–orbit induced downfield shift at Cα due to involvement of the 5f orbitals in the Th–C bonds. Additionally, the bonding analyses for 3 and 4 show a delocalized multi-center character of the ligand π orbitals involving the actinide. While a single–triple–single-bond resonance structure (e.g., An–C Created by potrace 1.16, written by Peter Selinger 2001-2019 C–CPh2) predominates, the An Created by potrace 1.16, written by Peter Selinger 2001-2019 C Created by potrace 1.16, written by Peter Selinger 2001-2019 C Created by potrace 1.16, written by Peter Selinger 2001-2019 CPh2 resonance form contributes, as well, more so for 3 than for 4.

The actinide allenylidenes [{(NR2)3}An(CCCPh2)] (An = U, Th, R = SiMe3) feature significant ligand-to-metal donation bonding and partial An Created by potrace 1.16, written by Peter Selinger 2001-2019 C double bond character.  相似文献   

9.
Conjugated molecular chains have the potential to act as “molecular wires” that can be employed in a variety of technologies, including catalysis, molecular electronics, and quantum information technologies. Their successful application relies on a detailed understanding of the factors governing the electronic energy landscape and the dynamics of electrons in such molecules. We can gain insights into the energetics and dynamics of charges in conjugated molecules using time-resolved infrared (TRIR) detection combined with pulse radiolysis. Nitrile ν(C Created by potrace 1.16, written by Peter Selinger 2001-2019 N) bands can act as IR probes for charges, based on IR frequency shifts, because of their exquisite sensitivity to the degree of electron delocalization and induced electric field. Here, we show that the IR intensity and linewidth can also provide unique and complementary information on the nature of charges. Quantifications of IR intensity and linewidth in a series of nitrile-functionalized oligophenylenes reveal that the C Created by potrace 1.16, written by Peter Selinger 2001-2019 N vibration is coupled to the nuclear and electronic structural changes, which become more prominent when an excess charge is present. We synthesized a new series of ladder-type oligophenylenes that possess planar aromatic structures, as revealed by X-ray crystallography. Using these, we demonstrate that C Created by potrace 1.16, written by Peter Selinger 2001-2019 N vibrations can report charge fluctuations associated with nuclear movements, namely those driven by motions of flexible dihedral angles. This happens only when a charge has room to fluctuate in space.

Quantification of the intensity and linewidth of the ν(C Created by potrace 1.16, written by Peter Selinger 2001-2019 N) IR band in a series of neutral and anionic nitrile-functionalized oligophenylenes reveals that the C Created by potrace 1.16, written by Peter Selinger 2001-2019 N vibration is coupled to nuclear and electronic structural changes.  相似文献   

10.
N-Dealkylation of amines by metal oxo intermediates (M Created by potrace 1.16, written by Peter Selinger 2001-2019 O) is related to drug detoxification and DNA repair in biological systems. In this study, we report the first example of N-dealkylation of various alkylamines by a luminescent osmium(vi) nitrido complex induced by visible light.

The visible light-induced N-dealkylation of various alkylamines by a luminescent osmium(vi) nitrido complex has been investigated. We provide definitive evidence that these reactions occur via an ET/PT mechanism.

High-valent metal oxo (M Created by potrace 1.16, written by Peter Selinger 2001-2019 O) species play key roles in many chemical and biological oxidation processes.1 They are versatile oxidants that can perform oxidation of substrates via a variety of pathways, including electron transfer, H-atom transfer, hydride transfer and O-atom transfer. In principle, high-valent metal nitrido (M Created by potrace 1.16, written by Peter Selinger 2001-2019 N) complexes should also function as versatile oxidants similar to M Created by potrace 1.16, written by Peter Selinger 2001-2019 O. Although there have been significant advances in M Created by potrace 1.16, written by Peter Selinger 2001-2019 N oxidation chemistry in recent years, the reactivity of M Created by potrace 1.16, written by Peter Selinger 2001-2019 N is still rather limited in scope compared to M Created by potrace 1.16, written by Peter Selinger 2001-2019 O.2 M Created by potrace 1.16, written by Peter Selinger 2001-2019 N is intrinsically less oxidizing than M Created by potrace 1.16, written by Peter Selinger 2001-2019 O due to the stronger electron donating property of the N3− ligand than the O2− ligand. Attempts to increase the oxidizing power of M Created by potrace 1.16, written by Peter Selinger 2001-2019 N by increasing the oxidation state or by using less electron-donating ancillary ligands often led to decomposition of the complexes, mainly due to facile coupling of the nitrido ligands to yield N2 (2M Created by potrace 1.16, written by Peter Selinger 2001-2019 N → 2M + N2).3 One appealing strategy to enhance the reactivity of M Created by potrace 1.16, written by Peter Selinger 2001-2019 N is photochemical excitation. We have recently designed an osmium(vi) nitrido complex [OsVI(N)(L)(CN)3] (NO2-OsN, HL = 2-(2-hydroxy-5-nitrophenyl)benzoxazole) that is strongly luminescent in the solid state and in fluid solutions.4 It readily absorbs visible light to generate a long-lived and highly oxidizing excited state with a redox potential of ca. 1.4 V. The excited state of this complex also possesses [Os Created by potrace 1.16, written by Peter Selinger 2001-2019 N˙] nitridyl characteristics that enable it to readily abstract H-atoms from inert organic substrates.5We report herein the visible-light induced N-dealkylation of various alkylamines by NO2-OsN. Iron oxo species have been used by heme and nonheme enzymes to carry out N-dealkylation reactions of tertiary amines, which are important processes involved in detoxification and DNA repair.6 A number of synthetic iron(iv) oxo complexes are also able to carry out such N-dealkylation reactions.7 Mechanistic studies using cytochrome P450 and synthetic iron oxo complexes indicate that there are two possible mechanisms for N-dealkylation of amines, namely hydrogen-atom transfer (HAT) and electron transfer–proton transfer (ET–PT) (Fig. 1).8 In this work we report the first example of N-dealkylation of various aromatic as well as aliphatic tertiary amines by a nitrido complex upon visible light excitation. We also provide unambiguous evidence that these reactions occur via an ET/PT mechanism.Open in a separate windowFig. 1Two possible mechanisms for N-demethylation of tertiary amines by cytochrome P450 and synthetic Fe(iv) oxo complexes (P = porphyrin).  相似文献   

11.
Ethyl and amide zinc thioureides [L1ZnEt]2 (1), [L1*ZnEt]2 (2) and [L1Zn(N(SiMe3)2)]2 (3) have been synthesised from the equimolar reaction of thiourea ligands (HL1 = iPrN(H)CSNMe2 and HL1* = PhN(H)CSNMe2) with diethyl zinc and zinc bis[bis(trimethylsilyl)amide] respectively. New routes towards heteroleptic complexes have been investigated through reactions of 1, 2 and 3 with β-ketoiminates (HL2 = [(Me)CN(H){iPr}–CHC(Me) Created by potrace 1.16, written by Peter Selinger 2001-2019 O]), bulky aryl substituted β-diiminates (HL3 = [(Me)CN(H){Dipp}–CHC(Me) Created by potrace 1.16, written by Peter Selinger 2001-2019 N{Dipp}] (Dipp = diisopropylphenyl) and HL3* = [(Me)CN(H){Dep}–CHC(Me) Created by potrace 1.16, written by Peter Selinger 2001-2019 N{Dep}] (Dep = diethylphenyl)) and donor-functionalised alcohols (HL4 = Et2N(CH2)3OH and HL4* = Me2N(CH2)3OH) and have led to the formation of the heteroleptic complexes [L1*ZnL3*] (5), [L1ZnL4]2 (6), [L1ZnL4*]2 (7), [L1*ZnL4] (8) and [L1*ZnL4*] (9). All complexes have been characterised by 1H and 13C NMR, elemental analysis, and the X-ray structures of HL1*, 1, 2, 6 and 7 have been determined via single crystal X-ray diffraction. Variable temperature 1H, COSY and NOESY NMR experiments investigating the dynamic behaviour of 5, 6 and 7 have shown these molecules to be fluxional. On the basis of solution state fluxionality and thermogravimetric analysis (TGA), alkoxyzinc thioureides 6 and 7 were investigated as single-source precursors for the deposition of the ternary material zinc oxysulfide, Zn(O,S), a buffer layer used in thin film photovoltaic devices. The aerosol-assisted chemical vapour deposition (AACVD) reaction of 7 at 400 °C led to the deposition of the heterodichalcogenide material Zn(O,S), which was confirmed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray analysis (EDX), with optical properties investigated using UV/vis spectroscopy, and surface morphology and film thickness examined using scanning electron microscopy (SEM).

This work investigates the synthesis and solution dynamics of heteroleptic alkoxyzinc thioureides for the chemical vapour deposition of the heterochalcogenide material Zn(O,S).  相似文献   

12.
We report on the first isolation and structural characterization of an iron phosphinoimino-borane complex Cp*Fe(η2-H2B Created by potrace 1.16, written by Peter Selinger 2001-2019 NC6H4PPh2) by dehydrogenation of iron amido-borane precursor Cp*Fe(η1-H3B–NHC6H4PPh2). Significantly, regeneration of the amido-borane complex has been realized by protonation of the iron(ii) imino-borane to the amino-borane intermediate [Cp*Fe(η2-H2B–NHC6H4PPh2)]+ followed by hydride transfer. These new iron species are efficient catalysts for 1,2-selective transfer hydrogenation of quinolines with ammonia borane.

Dehydrogenation of an amido-borane iron complex provides an imino-borane complex. Regeneration of the amido-borane precursor was achieved by protonation of the imino-borane followed by hydride transfer to the amino-borane intermediate.

Because of relevance to H2 storage1–10 and hydrogenation catalysis,11–15 metal amine-borane complexes16–18 and their dehydrogenated forms, such as amino-boranes20–22 and imino-boranes4 are arising as a significant family in organometallic chemistry. In transition metal-catalyzed dehydrocoupling of amine-boranes and related transfer hydrogenations, the interactions between the metal and the borane fragment are essential to dehydrogenation and the consequent transformations.16–20 Specifically, amino-borane complexes containing a M–H2B Created by potrace 1.16, written by Peter Selinger 2001-2019 NR2 moiety are the primary dehydrogenated species and are often identified as a resting point in the catalysis (Scheme 1a).20–22 Management of reversible dehydrogenation–regeneration reactions on a M–BH2 Created by potrace 1.16, written by Peter Selinger 2001-2019 NR2 platform could provide a strategy with which to design efficient catalysts capable of operating sustainable syntheses.Open in a separate windowScheme 1Schematic representation of metal-based amine-borane dehydrogenation.Wider exploration of metal amino-borane chemistry is challenging since M–H2B Created by potrace 1.16, written by Peter Selinger 2001-2019 NH2 species are very reactive toward H2 release. In 2010, Aldridge et al. reported the isolation of [(IMes)2Rh(H)22-H2B Created by potrace 1.16, written by Peter Selinger 2001-2019 NR2)] and [(IMes)2Ir(H)22-H2B Created by potrace 1.16, written by Peter Selinger 2001-2019 NR2)] from the metal-catalyzed dehydrogenation of R2HN·BH3.21a At the same time, Alcaraz and Sabo-Etienne reported the preparation of (PCy3)2Ru(H)22-H2B Created by potrace 1.16, written by Peter Selinger 2001-2019 NHnMe2−n) (n = 0–2) complexes22a by the dehydrogenation of amine-boranes with the corresponding ruthenium precursors. Subsequently, a straightforward synthesis of Ru, Rh, and Ir amino-borane complexes by reaction of H2B Created by potrace 1.16, written by Peter Selinger 2001-2019 NR2 (R = iPr or Cy) with the bis(hydrogen) complexes of M(H)22-H2)2(PCy3)2 or [CpRu(PR3)2]+ fragments was developed.21b,22b Turculet et al. have shown that the ruthenium-alkoxide complex is able to activate H3B·NHR2 producing hydrido ruthenium complex.23 Notably, Weller and Macgregor found that dehydrocoupling of ammonia-borane by [Ph2P(CH2)3PPh2Rh(η6-C6H5F)] affords a μ-amino-borane bimetallic Rh complex, in which the simplest H2B Created by potrace 1.16, written by Peter Selinger 2001-2019 NH2 moiety is trapped on a rhodium dimer.20aAlthough iron-catalyzed dehydrocoupling of amine-boranes has attracted great interest,24–29 iron amine-borane complexes, their dehydrogenated derivatives, and especially the catalysis relevant to organic synthesis are largely unexplored. Recently, Kirchner et al. reported a pincer-type iron complex generated by protonation of the borohydride iron complex (PNP)Fe(H)(η2-BH4) with ammonium salts.30 Inspired by earlier research on M–H2B Created by potrace 1.16, written by Peter Selinger 2001-2019 NR2 chemistry, we intended to establish the reversible conversions of amino-borane complexes and their dehydrogenated forms in a synthetic piano-stool iron system. Herein, we report dehydrogenation of iron amido-borane complex Cp*Fe(η1-H3B–NHC6H4PPh2) (2) (Cp* = Me5C5) to the imino-borane complex Cp*Fe(η2-H2B Created by potrace 1.16, written by Peter Selinger 2001-2019 NC6H4PPh2) (3), and resaturation of the imino-borane by stepwise protonation and hydride transfer (Scheme 1b). This new class of iron species is capable of catalyzing 1,2-selective transfer hydrogenation of quinolines with H3N·BH3.To synthesize the iron amido-borane complex, a new monomer, the iron tetrahydridoborate precursor Cp*Fe(η2-BH4)(NCMe) (1), was prepared in situ by the reaction of [Cp*Fe(NCMe)3]PF6 with Bu4NBH4 in acetonitrile at room temperature for 5 min. Such ferrous borohydrides have been documented only rarely,31 since they are prone to form polynuclear iron borate clusters.32,33 The 11B NMR spectrum of the reaction solution shows a quintet at δ 15.4 (JBH = 88 Hz) for the BH4 ligand of 1, and this stands in contrast to the signal at δ −32.0 observed for Bu4NBH4. Upon storing the reaction mixture at −30 °C overnight, single crystals suitable for X-ray diffraction were obtained. Crystallographic analysis confirmed the structure of 1 as a piano-stool iron tetrahydridoborate compound (ESI, Fig. S1).Addition of phosphinoamine ligand 1,2-Ph2PC6H4NH2 to a solution of 1 in acetonitrile caused an instantaneous color change from deep blue to dark brown (Scheme 2). ESI-MS studies indicated the production of the iron amido-borane compound (2) with m/z = 481.1793 (calcd m/z = 481.1770), which was isolated in 87% yield. NMR spectra showed a boron resonance at δ −17.5, and a phosphorus resonance at δ 85.9. The 1H NMR spectrum exhibits a characteristic hydride signal at δ −13.98, which is assigned to the bridging hydride Fe–H–B. Owing to exchange between the hydrogen atoms at the boron,34 the terminal B–H resonances in the 1H NMR spectrum are very broad and are obscured by the distinct Cp* signals. To assign the B–H hydride signals, the deuterated compound Cp*Fe(D3B–NHC6H4PPh2) (d-2) was synthesized from Cp*Fe(BD4)(NCMe). In addition to the Fe–D–B signal at δ −13.98, the 2H NMR spectrum of d-2 displayed discrete peaks at δ 2.23 and 0.19 for the terminal B–D hydrides (Fig. 1).Open in a separate windowFig. 1 2H NMR spectra for dehydrogenation of d-2 to d-3.Open in a separate windowScheme 2Synthetic route to imino-borane complex.When a C6H6 solution of 2 was held at 50 °C for 6 h the dehydrogenated imino-borane compound (3) was produced in 92% yield. The ESI-MS spectrum of 3 has a strong peak at m/z 479.1626 (calcd m/z = 479.1637) which can be compared to the peak at m/z = 481.1793 for 2. The isotopic distributions match well with the calculated values (see Fig. S3). GC analysis shows that the reaction produced H2 nearly quantitatively (see Fig. S4). In solution, the 31P NMR spectrum of 3 displays a sharp signal at δ 71.9, in contrast to the peak at δ 85.9 for 2. The 11B resonance shifts significantly, from δ −17.5 for 2 to δ 42.7 for 3 (Fig. S16), and is particularly diagnostic of a three-coordinate boron atom.21,35 This result indicates the B Created by potrace 1.16, written by Peter Selinger 2001-2019 N double bond character in the dehydrogenated form of the amido-borane complex. In the 1H NMR spectrum, the Fe–H–B signal was observed at δ −17.91 with the integral of 2H, and no characteristic signal for a terminal B–H hydride was found. To confirm the formation of an imino-borane compound, the hydrogen decoupling was also carried out with compound d-2 and monitored by 2H NMR spectra. Only a deuterium signal was observed at δ −17.91 for Fe–D–B, indicating the formation of d-3 (Fig. 1). When the dehydrogenation was conducted in a J-Young tube in C6D6, a characteristic triplet corresponding to HD appeared at δ 4.43 (JHD = 45 Hz) in the 1H NMR spectrum (Fig. S18).36The structures of 2 and 3 were verified by X-ray crystallographic analysis (Fig. 2). Consistent with NMR spectroscopic analysis, the BH3 moiety in 2 is stabilized by one of the B–H bonds binding at the Fe–NH unit to form an Fe–H–B–N four-membered metallacycle. This metal–ligand cooperative binding mode increased the B–H bond length in the bridging B–H(1) bond to 1.362 Å vs. 1.129 Å and 1.121 Å for the two terminal B–H bonds. The B–N bond length of 1.545(3) Å in 2 is slightly shorter than that in H3B·NH3 (dB–N = 1.58(2) Å).37 Crystallographic analysis of 3 confirmed an imino-borane complex with a Cp*Fe(η2-H2B Created by potrace 1.16, written by Peter Selinger 2001-2019 NC6H4PPh2) framework. After dehydrogenation of 2, striking structural changes were observed. The N atom has been become detached from Fe, while the BH2 fragment acts as a bis(σ-borane) ligand coordinated to the metal center.21–23 The B–N bond distance of 1.455(5) Å in 3 is shorter by 0.09 Å than that in 2, and is close to that reported for the cyclic trimer borazine (1.4355(21) Å).38 Combined with the NMR results, the B–N bond length in 3 suggests some double bond character.21,22 As the imino-borane fragment is tethered in the coordination sphere, the boron center adopts a quasi-tetrahedral geometry, and the B–N bond appears to be partially sp3 hybridized. Dehydrogenation of the amido-borane complex also caused the decrease of the Fe⋯B distances from 2.223(3) Å to 2.026(4) Å which is shorter than the sum of the covalent radii of Fe and B atom (2.16 Å), indicating that the borane and the metal are bonded.Open in a separate windowFig. 2Solid-sate structure (50% probability thermal ellipsoids) of (a) complex 2 and (b) 3. For clarity, hydrogen atoms of Cp* and phenyl rings are omitted.Notably, the amido-borane compound 2 can be regenerated by stepwise protonation of 3 and transfer of a hydride (Scheme 3). Complex 3 reacts readily with H(Et2O)2BArF4 in C6H5F. The reaction solution was analyzed by ESI-MS spectroscopy, which showed an ionic peak at m/z = 480.1726 (calcd m/z = 480.1715), suggesting the formation of [3H]+. Alternatively, the reaction of complex 2 with H(Et2O)2BArF4 unambiguously provides [3H]+ and produces H2. X-ray crystallographic analysis reveals that the resulting cationic complex [3H]+ exhibits a similar framework to its imino-borane precursor (3). The BH2 moiety retains a binding mode of the bis(σ-BH2) fashion (Fig. 3). In contrast, the B–N distance in [3H]+ (1.586(6) Å) is extended by 0.13 Å and the [3H]+ framework becomes much less compact than that of 3. Probably due to the fluxional structure of the seven-membered Fe–P–C–C–N–B(H) ring, the solution of [3H][BArF4] gives broad 1H NMR resonances even at −60 °C. The phosphorus resonance arose at δ 72.0 as a singlet when the solution sample was cooled to −40 °C (Fig. S20 and S21).Open in a separate windowFig. 3Solid-state structures of (a) complex [3H]+ and (b) [3H(PPh3)]+. For clarity, counterion [BArF4], hydrogen atoms of Cp* and phenyl rings have been omitted.Open in a separate windowScheme 3Conversions of iron imino-borane, amino-borane and amido-borane complexes.In [3H]+, the boron is coordinatively unsaturated, as manifested by its interaction with a σ-donor. For instance, treatment of 2 with [HPPh3][BArF4] (pKMeCNa = 7.6)39 provides a Ph3P-stabilized borane complex, [3H(PPh3)]+ (m/z = 742.2620, calcd m/z = 742.2626). The 1H NMR spectrum of [3H(PPh3)]+ exhibits an NH resonance at δ 4.68, suggesting that protonation occurred at the N site. The distinctive upfield hydride signal for Fe–H–B is observed at δ −15.58. In the 31P NMR spectrum, two phosphorus signals at δ 78.90 and −1.26 correspond to the Fe–P and the B–P resonances, respectively. The 11B signal at δ −13.72 indicates a tetracoordinated boron, which is further confirmed by crystallographic analysis of [3H(PPh3)]+ (Fig. 3). In the solid-sate structure, a Ph3P molecule is bound to the B center (dB–P = 1.982(4) Å), leading to the formation of a new Fe–H–B–N four-membered metallacycle. As a amido-borane complex, [3H(PPh3)]+ has a B–N bond length of 1.527(5) Å, somewhat shorter than 1.545(3) Å in 2.After attaching a proton at the N atom, we subsequently explored restoration of the original borane moiety. Treatment of freshly prepared [3H][BArF4] in fluorobenzene with catecholborane-NEt3 adduct (δB = 10.56, JHB = 142.4 Hz)40 results in the regeneration of 2, as evidenced by the NMR spectra (Fig. S29 and S30). The 1H NMR spectrum of the reaction mixture displays a characteristic hydride signal at −13.97 ppm, indicating the recovery of the iron amido-borane complex. On the other side, concomitant formation of the borenium ion (δB = 13.86) was also observed in the 11B NMR spectrum, which agrees with the hydride transfer from the organohydride reagent to [3H]+. It was interesting that the ion [3H]+ is stable towards 5,6-dihydrophenanthridine and Hantszch ester. These results indicate that the hydride-donating ability (ΔGH) of 2 is in the range of 55–59 kcal mol−1.41 The reactive nature of the hydride in 2 was demonstrated by the reaction with [HPPh3][BArF4], which produces [3H(PPh3)]+ and releases H2 (Scheme 3).1The metal amine-borane complexes and their dehydrogenated derivatives are implicated throughout the catalytic cycle of amine-borane dehydrogenation. We found both the iron complexes 2 and 3 are efficient catalysts for H3N·BH3 dehydrogenation at room temperature. In the presence of 1 mol% catalyst, a THF solution of H3N·BH3 (1.0 mmol) generates about 2.2 equivalent of H2 within 6 h based on GC quantification (Fig. S33). More importantly, such catalytic dehydrocoupling systems allow for selective transfer hydrogenation of quinolines to dihydroquinolines, which are valuable synthons leading to many bio-active compounds.42 For instance, addition of methyl-6-quinolineacetate (4) to the catalytic system containing one equiv. of H3N·BH3 and 1 mol% of 3 gave 1,2-dihydro-methyl-6-quinolineacetate (5) in excellent yield within 6 h (eqn (1)). The outcome of this reaction was unaffected by switching the catalyst from 3 to 2, or by use of excess reducing agent or by an increase in the reaction temperature (Table S1).  相似文献   

13.
Three-center, four-electron bonds provide unusually strong interactions; however, their nature remains ununderstood. Investigations of the strength, symmetry and the covalent versus electrostatic character of three-center hydrogen bonds have vastly contributed to the understanding of chemical bonding, whereas the assessments of the analogous three-center halogen, chalcogen, tetrel and metallic Created by potrace 1.16, written by Peter Selinger 2001-2019 -type long bonding are still lagging behind. Herein, we disclose the X-ray crystallographic, NMR spectroscopic and computational investigation of three-center, four-electron [D–X–D]+ bonding for a variety of cations (X+ = H+, Li+, Na+, F+, Cl+, Br+, I+, Ag+ and Au+) using a benchmark bidentate model system. Formation of a three-center bond, [D–X–D]+ is accompanied by an at least 30% shortening of the D–X bonds. We introduce a numerical index that correlates symmetry to the ionic size and the electron affinity of the central cation, X+. Providing an improved understanding of the fundamental factors determining bond symmetry on a comprehensive level is expected to facilitate future developments and applications of secondary bonding and hypervalent chemistry.

The factors determining the symmetry and the fundamental nature of the three-center, four-electron bonds are assessed.  相似文献   

14.
Uranium nitride compounds are important molecular analogues of uranium nitride materials such as UN and UN2 which are effective catalysts in the Haber–Bosch synthesis of ammonia, but the synthesis of molecular nitrides remains a challenge and studies of the reactivity and of the nature of the bonding are poorly developed. Here we report the synthesis of the first nitride bridged uranium complexes containing U(vi) and provide a unique comparison of reactivity and bonding in U(vi)/U(vi), U(vi)/U(v) and U(v)/U(v) systems. Oxidation of the U(v)/U(v) bis-nitride [K2{U(OSi(OtBu)3)3(μ-N)}2], 1, with mild oxidants yields the U(v)/U(vi) complexes [K{U(OSi(OtBu)3)3(μ-N)}2], 2 and [K2{U(OSi(OtBu)3)3}2(μ-N)2(μ-I)], 3 while oxidation with a stronger oxidant (“magic blue”) yields the U(vi)/U(vi) complex [{U(OSi(OtBu)3)3}2(μ-N)2(μ-thf)], 4. The three complexes show very different stability and reactivity, with N2 release observed for complex 4. Complex 2 undergoes hydrogenolysis to yield imido bridged [K2{U(OSi(OtBu)3)3(μ-NH)}2], 6 and rare amido bridged U(iv)/U(iv) complexes [{U(OSi(OtBu)3)3}2(μ-NH2)2(μ-thf)], 7 while no hydrogenolysis could be observed for 4. Both complexes 2 and 4 react with H+ to yield quantitatively NH4Cl, but only complex 2 reacts with CO and H2. Differences in reactivity can be related to significant differences in the U–N bonding. Computational studies show a delocalised bond across the U–N–U for 1 and 2, but an asymmetric bonding scheme is found for the U(vi)/U(vi) complex 4 which shows a U–N σ orbital well localised to U Created by potrace 1.16, written by Peter Selinger 2001-2019 N and π orbitals which partially delocalise to form the U–N single bond with the other uranium.

The first examples of molecular compounds containing the cyclic (U(vi)N)2 and (U(v)U(vi)N)2 cores were obtained by oxidation of the (U(v)U(v)N)2 analogue. Different bonding within these complexes yields different stability and reactivity with CO and H2.  相似文献   

15.
A cationic terminal iminoborane [Mes*N Created by potrace 1.16, written by Peter Selinger 2001-2019 B ← IPr2Me2][AlBr4] (3+[AlBr4]) (Mes* = 2,4,6-tri-tert-butylphenyl and IPr2Me2 = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene) has been synthesized and characterized. The employment of an aryl group and N-heterocyclic carbene (NHC) ligand enables 3+[AlBr4] to exhibit both B-centered Lewis acidity and BN multiple bond reactivities, thus allowing for the construction of tri-coordinate boron cations 5+–12+. More importantly, initial reactions involving coordination, addition, and [2 + 3] cycloadditions have been observed for the cationic iminoborane, demonstrating the potential to build numerous organoboron species via several synthetic routes.

An NHC-stabilized aryliminoboryl cation exhibits both boron-centered Lewis acidity and multiple bond reactivity and could be utilized as an effective synthon for unusual cationic boron species.  相似文献   

16.
Heterolanthanide complexes are difficult to synthesize owing to the similar chemistry of the lanthanide ions. Consequently, very few purely heterolanthanide complexes have been synthesized. This is despite the fact that such complexes hold interesting optical and magnetic properties. To fine-tune these properties, it is important that one can choose complexes with any given combination of lanthanides. Herein we report a synthetic procedure which yields pure heterodinuclear lanthanide cryptates LnLn*LX3 (X = NO3 or OTf) based on the cryptand H3L = N[(CH2)2N Created by potrace 1.16, written by Peter Selinger 2001-2019 CH–R–CH Created by potrace 1.16, written by Peter Selinger 2001-2019 N–(CH2)2]3N (R = m-C6H2OH-2-Me-5). In the synthesis the choice of counter ion and solvent proves crucial in controlling the Ln–Ln* composition. Choosing the optimal solvent and counter ion afford pure heterodinuclear complexes with any given combination of Gd(iii)–Lu(iii) including Y(iii). To demonstrate the versatility of the synthesis all dinuclear combinations of Y(iii), Gd(iii), Yb(iii) and Lu(iii) were synthesized resulting in 10 novel complexes of the form LnLn*L(OTf)3 with LnLn* = YbGd 1, YbY 2, YbLu 3, YbYb 4, LuGd 5, LuY 6, LuLu 7, YGd 8, YY 9 and GdGd 10. Through the use of 1H, 13C NMR and mass spectrometry the heterodinuclear nature of YbGd, YbY, YbLu, LuGd, LuY and YGd was confirmed. Crystal structures of LnLn*L(NO3)3 reveal short Ln–Ln distances of ∼3.5 Å. Using SQUID magnetometry the exchange coupling between the lanthanide ions was found to be anti-ferromagnetic for GdGd and YbYb while ferromagnetic for YbGd.

We present a synthetic strategy to prepare the first heterodinuclear lanthanide(iii) cryptate complexes. The cryptate design ensures that the complexes are stable in solution for days. The exchange coupling in YbYb, GdGd and YbGd is investigated.  相似文献   

17.
The intramolecular Csp3–H and/or C–C bond amination is very important in modern organic synthesis due to its efficiency in the construction of diversified N-heterocycles. Herein, we report a novel intramolecular cyclization of alkyl azides for the synthesis of cyclic imines and tertiary amines through selective Csp3–H and/or C–C bond cleavage. Two C–N single bonds or a C Created by potrace 1.16, written by Peter Selinger 2001-2019 N double bond are efficiently constructed in these transformations. The carbocation mechanism differs from the reported metal nitrene intermediates and therefore enables metal-free and new transformation.

A novel intramolecular cyclization of alkyl azides for the synthesis of cyclic imines and tertiary amines has been developed. The aliphatic C–H or C–C bond was selectively cleaved with the efficient formation of two C–N single bonds or a C Created by potrace 1.16, written by Peter Selinger 2001-2019 N double bond.  相似文献   

18.
Self-assembly of platinum(ii) complexes to form supramolecular structures/nanostructures due to intermolecular ligand π–π stacking and metal–ligand dispersive interactions is widely used to develop functional molecular materials, but the application of such non-covalent molecular interactions has scarcely been explored in medical science. Herein is described the unprecedented biological properties of platinum(ii) complexes relevant to induction of cancer cell death via manifesting such intermolecular interactions. With conjugation of a glucose moiety to the planar platinum(ii) terpyridyl scaffold, the water-soluble complex [Pt(tpy)(C Created by potrace 1.16, written by Peter Selinger 2001-2019 CArOGlu)](CF3SO3) (1a, tpy = 2,2′:6′,2′′-terpyridine, Glu = glucose) is able to self-assemble into about 100 nm nanoparticles in physiological medium, be taken up by lung cancer cells via energy-dependent endocytosis, and eventually transform into other superstructures distributed in endosomal/lysosomal and mitochondrial compartments apparently following cleavage of the glycosidic linkage. Accompanying the formation of platinum-containing superstructures are increased autophagic vacuole formation, lysosomal membrane permeabilization, and mitochondrial membrane depolarization, as well as anti-tumor activity of 1a in a mouse xenograft model. These findings highlight the dynamic, multi-stage extracellular and intracellular supramolecular self-assembly of planar platinum(ii) complexes driven by modular intermolecular interactions with potential anti-cancer application.

Self-assembly of platinum(ii) glycosylated arylacetylide gave transformable superstructures upon enzymatic action in cellulo, leading to perturbation of an autophagy-lysosomal system and cancer cell death.  相似文献   

19.
A di(o-tolyl)borylgold complex was synthesized via the metathesis reaction of a gold alkoxide with tetra(o-tolyl)diborane(4). The resulting diarylborylgold complex exhibited a Lewis acidic boron center and a characteristic visible absorption that arises from its HOMO–LUMO excitation, which is narrower than that of a previously reported dioxyborylgold complex. The diarylborylgold complex reacted with isocyanide in a stepwise fashion to afford single- and double-insertion products and a C–C coupled product. Reactions of this diarylborylgold complex with C Created by potrace 1.16, written by Peter Selinger 2001-2019 O/N double bond species furnished addition products under concomitant formation of Au–C and B–O/N bonds, which suggests nucleophilic reactivity of the gold metal center. DFT calculations provided details of the underlying reaction mechanism, which involves an initial coordination of the C Created by potrace 1.16, written by Peter Selinger 2001-2019 O/N bond to the boron vacant p-orbital of the diarylboryl ligand followed by a migration of the gold atom from the tetracoordinate sp3-hybridized boron center, which is analogous to the reactivity of the conventional sp3-hybridized borate species. The DFT calculations also suggested a stepwise mechanism for the reaction of this diarylborylgold complex with isocyanide, which afforded three different reaction products depending on the applied reaction conditions.

A di(o-tolyl)borylgold complex added to C Created by potrace 1.16, written by Peter Selinger 2001-2019 O/N double bond to form Au–C and B–O/N bonds. DFT calculations revealed a two-step mechanism consisting of the coordination of O/N atom to B atom followed by nucleophilic migration of Au atom.  相似文献   

20.
α-Diimines are commonly used as supporting ligands for a variety of transition metal-catalyzed processes, most notably in α-olefin polymerization. They are also precursors to valuable synthetic targets, such as chiral 1,2-diamines. Their synthesis is usually performed through acid-catalyzed condensation of amines with α-diketones. Despite the simplicity of this approach, accessing unsymmetrical α-diimines is challenging. Herein, we report the Ti-mediated intermolecular diimination of alkynes to afford a variety of symmetrical and unsymmetrical α-diimines through the reaction of diazatitanacyclohexadiene intermediates with C-nitrosos. These diazatitanacycles can be readily accessed in situ via the multicomponent coupling of Ti Created by potrace 1.16, written by Peter Selinger 2001-2019 NR imidos with alkynes and nitriles. The formation of α-diimines is achieved through formal [4 + 2]-cycloaddition of the C-nitroso to the Ti and γ-carbon of the diazatitanacyclohexadiene followed by two subsequent cycloreversion steps to eliminate nitrile and afford the α-diimine and a Ti oxo.

Alkyne diimination to unsymmetric α-diimines can be achieved via multicomponent reaction of Ti imidos and C-nitrosos. C-nitroso [4 + 2] cycloaddition across a diazatitanacyclohexadiene initiates cascading retrocycloadditions, liberating the α-diimine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号