首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biodegradable and amphiphilic triblock copolymers poly(ethyl ethylene phosphate)-poly(3-hydroxy-butyrate)-poly(ethyl ethylene phosphate) (PEEP-b-PHB-b-PEEP) have been successfully synthesized through ring-opening polymerization. The structures are confirmed by gel permeation chromatography and NMR analyses. Crystallization investigated by X-ray diffraction reveals that the block copolymer with higher content of poly(ethyl ethylene phosphate) (PEEP) is more amorphous, showing decreased crystallizability. The obtained copolymers self-assemble into biodegradable nanoparticles with a core-shell micellar structure in aqueous solution, verified by the probe-based fluorescence measurements and transmission electronic microscopy (TEM) observation. The hydrophobic poly(3-hydroxybutyrate) (PHB) block serves as the core of the micelles and the micelles are stabilized by the hydrophilic PEEP block. The size and size distribution are related to the compositions of the copolymers. Paclitaxel (PTX) has been encapsulated into the micelles as a model drug and a sustained drug release from the micelles is observed. MTT assay also demonstrates that the block copolymers are biocompatible, rendering these copolymers attractive for drug delivery. Supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20060358036)  相似文献   

2.
Double hydrophilic block copolymers poly(ethylene oxide)-b-polyglycidol were synthesized using living anionic polymerization. The polyglycidol blocks were made hydrophobic by the esterification of a part of hydroxyl groups with cinnamic acid, thus simultaneously attaching UV-sensitive double bonds to the polymer backbone. The block copolymers were found to spontaneously associate in aqueous solution forming well-defined micelles, where the corona of the micelles was formed of EO units and the cores consisted of hydrophobic glycidyl cinnanamate units. The critical micelle concentration was determined by light-scattering measurements and fluorescence spectroscopy. Stabilization of micelles was obtained by covalently crosslinking the cores of polyether micelles formed from amphiphilic block copolymers of the type poly(ethylene oxide)-b-poly(glycidol-co-glycidyl cinnamate) (denoted EO(113)-b-(Gl(33)-co-GlCA(33-x))). To obtain stable nanoparticles double bonds of cinnamate units contained in core were crosslinked under UV irradiation. The kinetics of the stabilization process was investigated using SEC-MALLS and UV spectroscopy. The parameters of the micelles and nanogels were calculated from the light-scattering data.  相似文献   

3.
两亲嵌段共聚物可以在水溶液中自组装形成亲水性链段为外壳、疏水性链段为内核的胶束,这种胶束能够用作药物载体而引起人们极大的关注。本文综述了两亲嵌段共聚物胶束用作医用材料的研究进展,主要内容包括医用两亲嵌段共聚物的种类,胶束化,以及用作诊断试剂载体、药物缓释载体、靶向载体等。两亲嵌段共聚物胶束用作磁共振造影剂载体有利于肿瘤的诊断,用作药物缓释载体可以有效增溶难溶性抗肿瘤药物,延长药物在体内的血液循环时间。此外,通过对胶束表面进行修饰或者施加外场,还可以实现靶向功能。因此,两亲嵌段共聚物胶束在医用材料领域有着广阔的发展前景。  相似文献   

4.
We report the design and synthesis of new fully biodegradable thermoresponsive amphiphilic poly(γ‐benzyl L ‐glutamate)/poly(ethyl ethylene phosphate) (PBLG‐b‐PEEP) block copolymers by ring‐opening polymerization of N‐carboxy‐γ‐benzyl L ‐glutamate anhydride (BLG? NCA) with amine‐terminated poly(ethyl ethylene phosphate) (H2N? PEEP) as a macroinitiator. The fluorescence technique demonstrated that the block copolymers could form micelles composed of a hydrophobic core and a hydrophilic shell in aqueous solution. The morphology of the micelles as determined by transmission electron microscopy (TEM) was spherical. The size and critical micelle concentration (CMC) values of the micelles showed a decreasing trend as the PBLG segment increased. However, UV/Vis measurements showed that these block copolymers exhibited a reproducible temperature‐responsive behavior with a lower critical solution temperature (LCST) that could be tuned by the block composition and the concentration.  相似文献   

5.
The synthesis and self‐assembly properties in aqueous solutions of novel amphiphilic block copolymers composed of one hydrophobic poly (lauryl methacrylate), (PLMA) block and one hydrophilic poly (oligo ethylene glycol methacrylate) (POEGMA) block are reported. The block copolymers were prepared by RAFT polymerization and were molecularly characterized by size exclusion chromatography, NMR and FT‐IR spectroscopy, and DSC. The PLMA‐b‐POEGMA amphiphilic block copolymers self‐assemble in nanosized complex nanostructures resembling compound micelles when inserted in aqueous media, as supported by light scattering and TEM measurements. The encapsulation and release of the model, hydrophobic, nonsteroidal anti‐inflammatory drug indomethacin in the polymeric micelles is also investigated. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 155–163  相似文献   

6.
Palladium-catalyzed Mizoroki-Heck reactions were carried out in water using thermoresponsive polymer micelles. The micelles were generated from thermoresponsive block copolymers consisting of a poly(N-isopropylacrylamide) (PNIPAAm) segment and a hydrophilic segment such as nonionic poly(ethylene glycol) (PEG) (2) and anionic poly(sodium p-styrenesulfonate) (PSSNa) (9). These copolymers exhibited lower critical solution temperature (LCST) behavior at ca. 40–50?°C and showed thermal stimuli-induced formation and dissociation of micelles. The copolymers formed micelles in aqueous solution at higher temperature, where catalytic reactions proceeded. At lower temperature, the micelles dissociated to form a clear solution, enabling efficient extraction of the products from aqueous reaction mixture. In the presence of these copolymers, palladium complexes catalyzed the coupling reactions between aryl iodides and alkene compounds inside the hydrophobic micelle cores in water under relatively milder conditions. Extraction of the products from the aqueous solution of 2 or 9 was found to be efficient enough in comparison with conventional surfactants.  相似文献   

7.
Several series of symmetrical triblock copolymers were synthesized by the reversible addition fragmentation chain transfer method. They consist of a long block of poly(N-isopropylacrylamide) as hydrophilic, thermoresponsive middle block, which is end-capped by two small strongly hydrophobic blocks made from five different vinyl polymers. The association of the amphiphilic polymers was studied in dilute and concentrated aqueous solution. The polymer micelles found at low concentrations form hydrogels at high concentrations, typically above 30–35 wt.%. Hydrogel formation and the thermosensitive rheological behavior were studied exemplarily for copolymers with hydrophobic blocks of polystyrene, poly(2-ethylhexyl acrylate), and poly(n-octadecyl acrylate). All systems exhibited a cloud point around 30 °C. Heating beyond the cloud point initially favors hydrogel formation but continued heating results in macroscopic phase separation. The rheological behavior suggests that the copolymers associate into flower-like micelles, with only a small share of polymers that bridge the micelles and act as physical cross-linkers, even at high concentrations.  相似文献   

8.
Shell cross-linked (SCL) thermoresponsive hybrid micelles consisting of a cross-linked thermoresponsive hybrid hydrophilic shell and a hydrophobic core domain were synthesized from poly(N-isopropylacrylamide-co-3- (trimethoxysilyl)propyl methacrylate)-b-polymethyl methacrylate (P(NIPAAm-co-MPMA)-b-PMMA) amphiphilic block copolymers. Transmission electron microscopy (TEM) images showed that the SCL micelles formed regularly globular nanoparticles. The SCL micelles showed reversible dispersion/aggregation in response to temperature cycles through an outer polymer shell lower critical solution temperature (LCST) for PNIPAAm at around 33 degrees C, observed by turbidity measurements and dynamic light scattering (DLS). The drug loading and in vitro drug release properties of the SCL micelles bearing a silica-reinforced PNIPAAm shell were further studied, which showed that the SCL micelles exhibited a much improved entrapment efficiency (EE) as well as a slower release rate which allowed the entrapped molecules to be slowly released over a much longer period of time as compared with pure PNIPAAm-b-PMMA micelles.  相似文献   

9.
以多孔硅球固定化猪胰脂肪酶(IPPL)为催化剂,温敏性HO-PNIPAM为大分子引发剂,5-甲基-5-烯丙氧羰基-三亚甲基碳酸酯(MAC)和5,5-二甲基三亚甲基碳酸酯(DTC)为共聚单体,通过开环聚合合成了不同结构比例的两亲性嵌段型共聚物P(MAC-co-DTC) -b-PNIPAM.该嵌段型共聚物在水中可自组装形成...  相似文献   

10.
The adsorption of amphiphilic poly(ethylene oxide)-b-poly(epsilon-caprolactone) and poly(ethylene oxide)-b-poly(gamma-methyl-epsilon-caprolactone) copolymers in aqueous solution on silica and glass surfaces has been investigated by flow microcalorimetry, small-angle neutron scattering (SANS), surface forces, and complementary techniques. The studied copolymers consist of a poly(ethylene oxide) (PEO) block of M(n) = 5000 and a hydrophobic polyester block of poly(epsilon-caprolactone) (PCL) or poly(gamma-methyl-epsilon-caprolactone) (PMCL) of M(n) in the 950-2200 range. Compared to homoPEO, the adsorption of the copolymers is significantly increased by the connection of PEO to an aliphatic polyester block. According to calorimetric experiments, the copolymers interact with the surface mainly through the hydrophilic block. At low surface coverage, the PEO block interacts with the surface such that both PEO and PCL chains are exposed to the aqueous solution. At high surface coverage, a dense copolymer layer is observed with the PEO blocks oriented toward the solution. The structure of the copolymer layer has been analyzed by neutron scattering using the contrast matching technique and by tapping mode atomic force microscopy. The experimental observations agree with the coadsorption of micelles and free copolymer chains at the interface.  相似文献   

11.
Double hydrophilic block copolymers (DHBC) consisting of a Jeffamine block, a statistical copolymer based on ethylene oxide and propylene oxide units possessing a lower critical solution temperature (LCST) of 30 degrees C in water, and poly(L-glutamic acid) as a pH-responsive block were synthesized by ring-opening polymerization of gamma-benzyl-L-glutamate N-carboxyanhydride using an amino-terminated Jeffamine macroinitiator, followed by hydrolysis. This DHBC proved thermoresponsive as evidenced by dynamic light scattering and small-angle neutron scattering experiments. Spherical micelles with a Jeffamine core and a poly(L-glutamic acid) corona were formed above the LCST of Jeffamine. The size of the core of such micelles decreased with increasing temperature, with complete core dehydration being achieved at 66 degrees C. Such behavior, commonly observed for thermosensitive homopolymers forming mesoglobules, is thus demonstrated here for a DHBC that self-assembles to generate thermoresponsive micelles of high colloidal stability.  相似文献   

12.
In this study, three kinds of amphiphilic block copolymers, termed MPEG-block-PDMMA, MPEG-block-PCPMA, and MPEG-block-PMPMA, which were composed of one hydrophilic monomethoxy poly(ethylene glycol) (MPEG) block and one hydrophobic polyacrylate block bearing pendant six-member cyclic ketal groups, were synthesized by atom transfer radical polymerization (ATRP). These polymers can disperse in aqueous media to self-assemble into micellar aggregates with a spherical core-shell structure with mean diameter below 300 nm. The stimuli-responsiveness of polymeric micelles from MPEG-block-PDMMA was detected by fluorescence-probe technique at pH 3.5 and 37 °C. The effect of chemical architecture and composition of the polymers on the pH-responsive properties of polymeric micelles was also studied. A combination of pH and temperature to trigger release behavior of these polymeric micelles was discussed by comparing the encapsulated molecule release ability under various pH and temperature conditions and analyzing chemical structural changes of the polymer before and after the triggering.  相似文献   

13.
Fluorine-containing amphiphilic block copolymers, poly(sodium methacrylate)-block-poly(nonafluorohexyl methacrylate) (NaMAm-b-NFHMAn) (m:n = 61:12, 72:33, 64:57), and the corresponding non-fluorine-containing amphiphilic block copolymer, poly(sodium methacrylate)-block-poly(hexyl methacrylate) (NaMAm-b-HMAn) (m:n = 64:10, 69:37, 67:50), were synthesized. Both polyNaMA-b-polyNFHMA and polyNaMA-b-polyHMA formed micelles above critical micelle concentrations, (cmc's), around 3 x 10(-5) to 1 x 10(-4) mol/L, while neither polymer decreased surface tension of aqueous solutions. The size and shape of the micelles were examined by dynamic light scattering, small-angle neutron scattering, and small-angle X-ray scattering. PolyNaMA-b-polyHMA appeared to form only spherical micelles, while polyNaMA-b-polyNFHMA with a long NFHMA segment formed both spherical and rodlike micelles. The micelles of fluorine-containing block copolymers were obviously larger than those of non-fluorine-containing block copolymers with the same chain length and the same hydrophilic/hydrophobic chain ratio. The fluorine-containing block copolymer selectively solubilized fluorinated dye into the water phase when a mixture of decafluorobiphenyl and 2,6-dimethylnaphthalene was added to the micelle solution.  相似文献   

14.
Block copolymers consisting of poly(solketal acrylate) and poly(l-lactide) were synthesized by combination of atom transfer radical polymerization (ATRP) and ring opening polymerization (ROP) technique. Block copolymerization has been done by two different pathways, simultaneously and sequentially by using a dual functional initiator. Well defined block copolymers were obtained by sequential block copolymerization first implementing ROP of l-lactide followed by ATRP of solketal acrylate. After hydrolysis of the solketal acrylate segments hydrophilic poly(2,3-dihydroxypropyl acrylate) blocks were obtained. The amphiphilic block copolymers were able to self-organize in aqueous solution. Aggregation behavior was studied by means of dynamic and static light scattering. Time dependent enzymatic and hydrolytic degradation of the poly(l-lactide) cores was detected by dynamic light scattering. If enzymatic solutions were used the degradation process proceeded faster and was completed within 4000 min.  相似文献   

15.
16.
通过大分子引发剂ω-胺基-α-甲氧基聚乙二醇引发N-羧基-α-氨基环内酸酐开环聚合和酸性水解制备了一种具有pH-响应性的三嵌段共聚物聚乙二醇-聚谷氨酸-聚丙氨酸(mPEG-PLGA-PLAA).通过核磁共振、ζ-电势、动态光散射、电子显微镜等手段表征了此类三嵌段共聚物的自组装过程及所形成胶束的pH-响应性.使用圆二色谱和红外光谱,分析了胶束结构随环境pH值转变过程中聚氨基酸链段二级结构的变化.以阿霉素作为模型药物,研究了三嵌段共聚物的载药能力和在不同pH条件下的药物释放能力.在碱性条件下,PLGA链段去质子化,链段从疏水性变为亲水性,胶束中间层由于水合作用变得松散,药物释放速率增加;在酸性条件下,PLGA链段质子化,不带电荷,与阿霉素药物分子间的静电相互作用消失.同时,PLGA链段α-螺旋含量增加,形成由链内氢键维持的刚性棒状结构,将链段周围包埋的药物分子"挤出",加速了药物的释放.  相似文献   

17.
A block copolymer of hydrophilic poly(ethylene oxide) and a hydrophobic poly(alkylene oxide) can associate in dilute aqueous solution to form micelles. The results of recent investigations of the micellisation behaviour and micelle properties of such copolymers are described. Copolymers of ethylene oxide with propylene oxide, 1,2‐butylene oxide or styrene oxide are considered, including aspects of their preparation. Experimental methods for determination of critical conditions for micellisation, micelle association number and spherical‐micelle radius are summarised. Effects of temperature, composition, block length and block architecture (diblock, triblock and cyclic‐diblock) are described and, where possible, related to the predictions of theory. Brief consideration is given to the dynamics of micelle formation/dissociation, to cylindrical micelles, and to effects of added salts.  相似文献   

18.
Comicellization of a star block copolymer poly(ε-caprolactone)-block-poly(diethylamino)ethyl methacrylate (S(PCL-b-PDEAEMA)) and a linear block copolymer methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) (mPEG-b-PCL) was developed to enhance the stability and lower the cytotoxicity of the micelles. The two copolymers self-assembled into the mixed micelles with a common PCL core surrounded by a mixed PDEAEMA/mPEG shell in aqueous solution. This core-shell structure was transformed to the core-shell-corona structure at high pH due to the collapse of the PDEAEMA segment. The properties of the polymeric micelles were greatly dependent on the weight ratio of the two copolymers and the external pH. As increasing the mPEG-b-PCL content, the size and the zeta potential of the mixed micelles were lowered while the pH-dependent stability and the biocompatibility were improved. Moreover, an increase in pH accelerated the release of indomethacin (IND) from the mixed micelles in vitro. These results augured that the mixed micelles could be applied as a stable pH-sensitive release system.  相似文献   

19.
Water-soluble, amphiphilic diblock copolymers were synthesized by reversible addition fragmentation chain transfer polymerization. They consist of poly(butyl acrylate) as hydrophobic block with a low glass transition temperature and three different nonionic water-soluble blocks, namely, the classical hydrophilic block poly(dimethylacrylamide), the strongly hydrophilic poly(acryloyloxyethyl methylsulfoxide), and the thermally sensitive poly(N-acryloylpyrrolidine). Aqueous micellar solutions of the block copolymers were prepared and characterized by static and dynamic light scattering analysis (DLS and SLS). No critical micelle concentration could be detected. The micellization was thermodynamically favored, although kinetically slow, exhibiting a marked dependence on the preparation conditions. The polymers formed micelles with a hydrodynamic diameter from 20 to 100 nm, which were stable upon dilution. The micellar size was correlated with the composition of the block copolymers and their overall molar mass. The micelles formed with the two most hydrophilic blocks were particularly stable upon temperature cycles, whereas the thermally sensitive poly(N-acryloylpyrrolidine) block showed a temperature-induced precipitation. According to combined SLS and DLS analysis, the micelles exhibited an elongated shape such as rods or worms. It should be noted that the block copolymers with the most hydrophilic poly(sulfoxide) block formed inverse micelles in certain organic solvents.  相似文献   

20.
Amphiphilic AB block copolymers consisting of thermosensitive poly(N-(2-hydroxypropyl) methacrylamide lactate) and poly(ethylene glycol), pHPMAmDL-b-PEG, were synthesized via a macroinitiator route. Dynamic light scattering measurements showed that these block copolymers form polymeric micelles in water with a size of around 50 nm by heating of an aqueous polymer solution from below to above the critical micelle temperature (cmt). The critical micelle concentration as well as the cmt decreased with increasing pHPMAmDL block lengths, which can be attributed to the greater hydrophobicity of the thermosensitive block with increasing molecular weight. Cryogenic transmission electron microscopy analysis revealed that the micelles have a spherical shape with a narrow size distribution. 1H NMR measurements in D2O showed that the intensity of the peaks of the protons from the pHPMAmDL block significantly decreased above the cmt, indicating that the thermosensitive blocks indeed form the solidlike core of the micelles. Static light scattering measurements demonstrated that pHPMAmDL-b-PEG micelles with relatively large pHPMAmDL blocks possess a highly packed core that is stabilized by a dense layer of swollen PEG chains. FT-IR analysis indicated that dehydration of amide bonds in the pHPMAmDL block occurs when the polymer dissolved in water is heated from below to above its cmt. The micelles were stable when an aqueous solution of micelles was incubated at 37 degrees C and at pH 5.0, where the hydrolysis rate of lactate side groups is minimized. On the other hand, at pH 9.0, where hydrolysis of the lactic acid side groups occurs, the micelles started to swell after 1.5 h of incubation and complete dissolution of micelles was observed after 4 h as a result of hydrophilization of the thermosensitive block. Fluorescence spectroscopy measurements with pyrene loaded in the hydrophobic core of the micelles showed that when these micelles were incubated at pH 8.6 and at 37 degrees C the microenvironment of pyrene became increasingly hydrated in time during this swelling phase. The results demonstrate the potential applicability of pHPMAmDL-b-PEG block copolymer micelles for the controlled delivery of hydrophobic drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号