首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The observation that the hyperbolic shallow water equations and the Green–Naghdi equations in Lagrangian coordinates have the form of an Euler–Lagrange equation with a natural Lagrangian allows us to apply Noether's theorem for constructing conservation laws for these equations. In this study the complete group analysis of these equations is given: admitted Lie groups of point and contact transformations, classification of the point symmetries and all invariant solutions are studied. For the hyperbolic shallow water equations new conservation laws which have no analog in Eulerian coordinates are obtained. Using Noether's theorem a new conservation law of the Green–Naghdi equations is found. The dependence of solutions on the parameter is illustrated by self-similar solutions which are invariant solutions of both models.  相似文献   

2.
The equations for a self-similar solution to an inviscid incompressible fluid are mapped into an integral equation that hopefully can be solved by iteration. It is argued that the exponents of the similarity are ruled by Kelvin's theorem of conservation of circulation. The end result is an iteration with a nonlinear term entering a kernel given by a 3D integral for a swirling flow, likely within reach of present-day computational power. Because of the slow decay of the similarity solution at large distances, its kinetic energy diverges, and some mathematical results excluding non-trivial solutions of the Euler equations in the self-similar case do not apply.  相似文献   

3.
It has long been suspected that flows of incompressible fluids at large or infinite Reynolds number (namely at small or zero viscosity) may present finite time singularities. We review briefly the theoretical situation on this point. We discuss the effect of a small viscosity on the self-similar solution to the Euler equations for inviscid fluids. Then we show that single-point records of velocity fluctuations in the Modane wind tunnel display correlations between large velocities and large accelerations in full agreement with scaling laws derived from Leray's equations (1934) for self-similar singular solutions to the fluid equations. Conversely, those experimental velocity–acceleration correlations are contradictory to the Kolmogorov scaling laws.  相似文献   

4.
The two-dimensional(2D) pseudo-steady isothermal flow, which is isentropic and irrotational, around a convex corner is studied. The self-similar solutions for the supersonic flow around the convex corner are constructed, where the properties of the centered simple wave are used for the 2D isentropic irrotational pseudo-steady Euler equations. The geometric procedures of the center simple waves are given. It is proven that the supersonic flow turns the convex corner by an incomplete centered expansion wave or an incomplete centered compression wave, depending on the conditions of the downstream state.  相似文献   

5.
This paper is devoted to the generalization of a well-known result on reducible equations by Courant and Friedrichs [7] and a motivational result on compressible Euler system within the context of ideal gases by Li et al. [10]. The characteristic decomposition technique has been used to prove that any hyperbolic state, adjacent to a constant state, is simple for a pseudo-steady isentropic irrotational flow, modeled by Euler equations, in van der Waals fluids. Furthermore, this result is extended to full Euler system in self-similar coordinates provided the pseudo-flow characteristics are extending into a constant state.  相似文献   

6.
Self-similar solutions arise naturally as special solutions of system of partial differential equations (PDEs) from dimensional analysis and, more generally, from the invariance of system of PDEs under scaling of variables. Usually, such solutions do not globally satisfy imposed boundary conditions. However, through delicate analysis, one can often show that a self-similar solution holds asymptotically in certain identified domains. In the present paper, it is shown that self-similar phenomena can be studied through use of many ideas arising in the study of dynamical systems. In particular, there is a discussion of the role of symmetries in the context of self-similar dynamics. We use the method of Lie group invariance to determine the class of self-similar solutions to a problem involving plane and radially symmetric flows of a relaxing non-ideal gas involving strong shocks. The ambient gas ahead of the shock is considered to be homogeneous. The method yields a general form of the relaxation rate for which the self-similar solutions are admitted. The arbitrary constants, occurring in the expressions for the generators of the local Lie group of transformations, give rise to different cases of possible solutions with a power law, exponential or logarithmic shock paths. In contrast to situations without relaxation, the inclusion of relaxation effects imply constraint conditions. A particular case of the collapse of an imploding shock is worked out in detail for radially symmetric flows. Numerical calculations have been performed to determine the values of the self-similarity exponent and the profile of the flow variables behind the shock. All computations are performed using the computation package Mathematica.  相似文献   

7.
The problem of hydraulic fracture formation in a porous medium is investigated in the approximation of small fracture opening and inertialess incompressible Newtonian fluid fracture flow when the seepage through the fracture walls into the surrounding reservoir is asymptotically small or large. It is shown that the system of equations describing the propagation of the fracture has self-similar solutions of power-law or exponential form only. A family of self-similar solutions is constructed in order to determine the evolution of the fracture width and length, the fluid velocity in the fracture, and the length of fluid penetration into the porous medium when either the fluid flow rate or the pressure as a power-law or exponential function of time is specified at the fracture entrance. In the case of finite fluid penetration into the soil the system of equations has only a power-law self-similar solution, for example, when the fluid flow rate is specified at the fracture entrance as a quadratic function of time. The solutions of the self-similar equations are found numerically for one of the seepage regimes.  相似文献   

8.
We construct classical self-similar solutions to the interaction of two arbitrary planar rarefaction waves for the polytropic Euler equations in two space dimensions. The binary interaction represents a major type of interaction in the two-dimensional Riemann problems, and includes in particular the classical problem of the expansion of a wedge of gas into vacuum. Based on the hodograph transformation, the method employed here involves the phase space analysis of a second-order equation and the inversion back to (or development onto) the physical space.  相似文献   

9.
All invariant and partially invariant solutions of the Green-Naghdi equations are obtained that describe the second approximation of shallow water theory. It is proved that all nontrivial invariant solutions belong to one of the following types: Galilean-invariant, stationary, and self-similar solutions. The Galilean-invariant solutions are described by the solutions of the second Painleve equation, the stationary solutions by elliptic functions, and the self-similar solutions by the solutions of the system of ordinary differential equations of the fourth order. It is shown that all partially invariant solutions reduce to invariant solutions. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 6, pp. 26–35, November–December, 2005.  相似文献   

10.
Exact solutions of the boundary layer equations can be obtained in closed form only in rare cases. These generally involve self-similar solutions for which the corresponding ordinary differential equation can be integrated exactly. In this paper solutions of more general form, containing additive functions of the longitudinal x coordinate in the expression's for the stream function and the self-similar variable, are considered in relation to two-dimensional steady boundary layers. This makes it possible to enlarge the class of problems whose solutions are analytic expressions and in a number of cases can be obtained in the form of expressions containing arbitrary functions of x, which makes possible various interpretations of the solution. In order to introduce arbitrary functions into the solutions of the equations of the axisymmetric boundary layer the problem is reduced to an overdetermined system of ordinary differential equations. This method is also capable of being applied more widely.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 45–51, March–April, 1990.  相似文献   

11.
A self-similar solution of the three-dimensional (3d) incompressible Euler equations is defined byu(x,t) =U(y)/t*-t) α, y = x/(t* ~ t)β,α,β> 0, whereU(y) satisfiesζU + βy. ΔU + U. VU + VP = 0,divU = 0. For α = β = 1/2, which is the limiting case of Leray’s self-similar Navier—Stokes equations, we prove the existence of(U,P) ε H3(Ω,R3 X R) in a smooth bounded domain Ω, with the inflow boundary data of non-zero vorticity. This implies the possibility that solutions of the Euler equations blow up at a timet = t*, t* < +∞.  相似文献   

12.
The numerical solutions of standing waves for Euler equations with the nonlinear free surface boundary condition in a two-dimensional(2D) tank are studied.The irregular tank is mapped onto a fixed square domain through proper mapping functions. A staggered mesh system is employed in a 2D tank to calculate the elevation of the transient fluid.A time-independent finite difference method,which is developed by Bang-fuh Chen,is used to solve the Euler equations for incompressible and inviscid fluids.The numer...  相似文献   

13.
It is shown that the self-similar solutions of the Navier-Stokes and Burnett equations found earlier by the authors [1–9] can be extended to the case of two-dimensional flows of a weakly rarefied gas described by Grad's equations. Examples are given of numerical realization of self-similar solutions for flow in an expanding planar channel. It is found that there are appreciable differences between the behavior of the self-similar solutions of the Navier-Stokes, Burnett, and Grad equations in the neighborhood of a channel wall.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 88–94, May–June, 1982.  相似文献   

14.
Self-similar solutions of nonstationary equations of the boundary layer in ordinary hydrodynamics are discussed in [1, 2]. In this paper self-similar solutions of nonstationary equations of a plane magnetohydrodynarnic boundary layer are sought. In this case, a transformation to curvilinear coordinates of a certain special form is employed. Its choice is determined by the requirements essential to reducing the equations of the boundary layer to a system of ordinary equations. H. Weyl's iterative method is used to solve the equations describing the flow over a plate suddenly set in motion.  相似文献   

15.
The method of group invariance under an infinitesimal transformation is applied to a class of nonlinear partial differential equations. Besides yielding a large number of known forms of self-similar solutions, the method also gives new types of solutions.  相似文献   

16.
A numerical algorithm to study the boundary‐value problem in which the governing equations are the steady Euler equations and the vorticity is given on the inflow parts of the domain boundary is developed. The Euler equations are implemented in terms of the stream function and vorticity. An irregular physical domain is transformed into a rectangle in the computational domain and the Euler equations are rewritten with respect to a curvilinear co‐ordinate system. The convergence of the finite‐difference equations to the exact solution is shown experimentally for the test problems by comparing the computational results with the exact solutions on the sequence of grids. To find the pressure from the known vorticity and stream function, the Euler equations are utilized in the Gromeka–Lamb form. The numerical algorithm is illustrated with several examples of steady flow through a two‐dimensional channel with curved walls. The analysis of calculations shows strong dependence of the pressure field on the vorticity given at the inflow parts of the boundary. Plots of the flow structure and isobars, for different geometries of channel and for different values of vorticity on entrance, are also presented. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
J. Jena 《Meccanica》2012,47(5):1209-1215
In this paper, Lie group of transformation method is used to investigate the self-similar solutions for the system of partial differential equations describing a plasma with axial magnetic field (θ–pinch). The arbitrary constants occurring in the expressions for the infinitesimals of the local Lie group of transformations give rise to two different cases of possible solutions i.e. with a power law and exponential shock paths. A particular solution to the problem in one case has been found out.  相似文献   

18.
The fracture of two closely spaced elastic beams by an incompressible viscous fluid is considered. The beam bending is described in the framework of the Kirchhoff-Love model. The self-similar solutions are sought by the group methods. The numerical results obtained when solving the corresponding system of differential equations with various boundary conditions are graphically illustrated in the form of pressure and velocity distributions within the fluid and in the form of the distance between the beams in the fracture zone.  相似文献   

19.
We prove well-posedness for the three-dimensional compressible Euler equations with moving physical vacuum boundary, with an equation of state given by p(ρ) =  C γ ρ γ for γ > 1. The physical vacuum singularity requires the sound speed c to go to zero as the square-root of the distance to the moving boundary, and thus creates a degenerate and characteristic hyperbolic free-boundary system wherein the density vanishes on the free-boundary, the uniform Kreiss–Lopatinskii condition is violated, and manifest derivative loss ensues. Nevertheless, we are able to establish the existence of unique solutions to this system on a short time-interval, which are smooth (in Sobolev spaces) all the way to the moving boundary, and our estimates have no derivative loss with respect to initial data. Our proof is founded on an approximation of the Euler equations by a degenerate parabolic regularization obtained from a specific choice of a degenerate artificial viscosity term, chosen to preserve as much of the geometric structure of the Euler equations as possible. We first construct solutions to this degenerate parabolic regularization using a higher-order version of Hardy’s inequality; we then establish estimates for solutions to this degenerate parabolic system which are independent of the artificial viscosity parameter. Solutions to the compressible Euler equations are found in the limit as the artificial viscosity tends to zero. Our regular solutions can be viewed as degenerate viscosity solutions. Our methodology can be applied to many other systems of degenerate and characteristic hyperbolic systems of conservation laws.  相似文献   

20.
The two-dimensional inviscid refraction of a shock wave at an oblique contact discontinuity is self-similar; i.e. it depends only upon the variables , . We transform the compressible Euler equations into the self-similar () coordinates and solve the resulting boundary-value problem by an implicit equilibrium flux method. We present results for strong shock ( where M is the incident shock Mach number) interactions with an oblique contact discontinuity separating an inert gas from a gas which exhibits high-temperature gas chemistry effects. To model high-temperature effects we employ Lighthill's ideal dissociating gas (IDG) model. Comparison between the frozen and equilibrium limits, both of which are self-similar, indicate large changes in peak density and temperatures. Significant differences in the overall flow pattern between the frozen and equilibrium limits are observed for interfaces with low negative Atwood ratio and high positive Atwood ratio. Results from a local analysis are presented when the shock refraction is regular. The critical angle at which the transition from regular to irregular refraction occurs is slightly larger for the equilibrium chemistry case. Received 6 September 1996 / Accepted 20 May 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号