首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Numerical simulations have been performed to study the influence of the free-stream disturbances on the alternation of the steady shock wave reflection configurations in the dual solution domain. Different types of disturbances have been considered. The analysis of interaction between disturbances and the incident shock wave can be substantially simplified for the localized density disturbances. It is shown that such disturbances can indeed cause the transition from regular reflection to Mach reflection and back, so that within a certain range of angles of incidence the shock wave reflection configuration can be considered as a bi-stable system. The threshold amplitude of the localized density disturbance, able to induce the transition, has been estimated theoretically. The results of numerical computations convince of higher stability of the Mach reflection in the dual solution domain compared to the regular reflection, which is in accordance with available experimental data. Received 10 May 2001 / Accepted 15 November 2001 Published online 8 July 2002  相似文献   

2.
New numerical and experimental results on the transition between regular and Mach reflections of steady shock waves are presented. The influence of flow three-dimensionality on transition between steady regular and Mach reflection has been studied in detail both numerically and experimentally. Characteristic features of 3D shock wave configuration, such as peripheral Mach reflection, non-monotonous Mach stem variation in transverse direction, the existence of combined Mach-regular-peripheral Mach shock wave configuration, have been found in the numerical simulations. The application of laser sheet imaging technique in streamwise direction allowed us to confirm all the details of shock wave configuration in the experiments. Close agreement of the numerical and experimental data on Mach stem heights is shown. Received 23 November 2000 / Accepted 25 April 2001  相似文献   

3.
When a weak shock wave reflects from wedges its reflection pattern does not appear to be a simple Mach reflection. This reflection pattern is known to be von Neumann Mach reflection in which a Mach stem can not necessarily be straight. In this paper the local change of the Mach stem curvature was experimentally and numerically investigated. A distinct triple point, at which the curvature becomes infinite as appears in a simple Mach reflection, was not observed but the Mach stem curvature became a maximum between foot of the Mach stem and a point, P1, at which an incident shock met with a reflected shock. Maximum curvature point P2 and P1 do not coincide for small wedge angles and tend to merge over a certain wedge angle. Experimental results agreed with numerical results. The trajectory angle of P2 was found to be expressed well by Whitham's shock-shock angle.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

4.
In order to examine the transition between regular and Mach reflection in a three-dimensional flow, a range of special geometry test pieces, and inlets, were designed. The concept is to have a geometry consisting of two plane wedges which results in regular reflection between the incident waves off the top and bottom of the inlet capped by two curved end sections causing Mach reflection. The merging of these two reflection patterns and the resulting downstream flow are studied using laser vapor screen and shadowgraph imaging supported by numerical simulation. An angled Mach disc is formed which merges with the line of regular reflection. A complex wave pattern results with the generation of a bridging shock connecting the reflected wave from the Mach reflection with the reflected waves from the regular reflection. In order to experimentally access the flow within the duct, a number of tests were conducted with one end cap removed. This resulted in a modified flow due to the expansive flow at the open end the influence of which was also studied in more detail.  相似文献   

5.
Classification of various types of the reflections of a shock wave over a straight wedge is proposed. The idea about entire reflection phenomenon as a result of interaction of two processes—the shock wave reflection process and the flow deflection process—serves as a basis for the classification. To recognize the types of reflection, changes in the shapes of the reflected wave, Mach stem, and contact surface (slipstream) are taken into account. The boundaries and domains of existence for various types of reflection configuration are reported. New terms for some types of reflection are proposed. The domain of irregular non-Mach reflection is analyzed carefully. It is shown that the von Neumann reflection pattern can result from not only the weak shock reflection but also the strong shock reflection over thin wedges. Shadowgraph images of different types of irregular reflection that illustrate the suggested classification are presented. Emphasis is placed on near-wall behavior of the contact discontinuity in the Mach configuration.  相似文献   

6.
We consider self-similar (pseudo-steady) shock reflection at an oblique wall. There are three parameters: wall corner angle, Mach number, angle of incident shock. Ever since Ernst Mach discovered the irregular reflection named after him, researchers have sought to predict precisely for which parameters the reflection is regular. Three conflicting proposals—the detachment, sonic and von Neumann criteria—have been studied extensively without a clear result. We demonstrate that the sonic criterion is not correct. We consider polytropic potential flow and prove that there is an open nonempty set of parameters that admit a global regular reflection with a reflected shock that is transonic. We also provide a clear physical reason: the flow type (sub- or supersonic) is not decisive; instead the reflected shock type (weak or strong) determines whether structural perturbations decay towards the reflection point.  相似文献   

7.
The internal flowfield including shock reflections structure inside a 2-D half inlet model was examined by a double exposure holographic interferometry using a Q-switched pulse laser. The interferograms give detailed flow visualization pictures. The structures of regular reflection, lambda reflection and Mach reflection in the inlet channel were observed. From the analysis of fringe patterns, the quantitative distributions of flow density, pressure and Mach number of the internal flowfield have been reconstructed. The boundary layer thickening and separation in the case of lambda reflection and the Mach stem in the case of Mach reflection were clearly demonstrated in the holographic fringe patterns. The results show that the shock interacitons with the ramp and the wall introduce a complicated flow structure which could strongly affect the efficiency of the inlet.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

8.
The pattern of shock wave reflection over a wedge is, in general, either a regular reflection or a Mach reflection, depending on wedge angles, shock wave Mach numbers, and specific heat ratios of gases. However, regular and Mach reflections can coexist, in particular, over a three-dimensional wedge surface, whose inclination angles locally vary normal to the direction of shock propagation. This paper reports a result of diffuse double exposure holographic interferometric observations of shock wave reflections over a skewed wedge surface placed in a 100 × 180 mm shock tube. The wedge consists of a straight generating line whose local inclination angle varies continuously from 30° to 60°. Painting its surface with fluorescent spray paint and irradiating its surface with a collimated object beam at a time interval of a few microseconds, we succeeded in visualizing three-dimensional shock reflection over the skewed wedge surface. Experiments were performed at shock Mach numbers, 1.55, 2.02, and 2.53 in air. From reconstructed holographic images, we estimated critical transition angles at these shock wave Mach numbers and found that these were very close to those over straight wedges. This is attributable to the flow three-dimensionality.   相似文献   

9.
P. Xie  Z. Y. Han  K. Takayama 《Shock Waves》2005,14(1-2):29-36
In the Mach reflection of plane shock on a concave double wedge, after two triple points collide with each other, the wave pattern is usually complicated. In this paper, firstly, a shock dynamic approach is used for studying this problem. In this approach, the method of shock-shock polar is used for better understanding the pattern of disturbance propagation. A downward-traveling shock-shock disturbance on the Mach stem is predicted theoretically. Secondly, based on the idea of shock dynamic approach, a gas dynamic model is built for studying the same problem. A similar result is obtained and the formation of the downward-traveling triple point is analyzed. This downward-traveling disturbance propagates and reflects between the upward-traveling shock-shock locus and the wall surface, causing the Mach number of Mach stem to increase and making the wave configuration approach to the one in the Mach reflection on a single wedge.Received: 19 April 2004, Accepted: 2 December 2004, Published online: 16 March 2005[/PUBLISHED]Correspondence to: P. Xie, Z.Y. Han  相似文献   

10.
An experimental study shows that the Guderley reflection (GR) of shock waves can be produced in a standard shock tube. A new technique was utilised which comprises triple point of a developed weak Mach reflection undergoing a number of reflections off the ceiling and floor of the shock tube before arriving at the test section. Both simple perturbation sources and diverging ramps were used to generate a transverse wave in the tube which then becomes the weak reflected wave of the reflection pattern. Tests were conducted for three ramp angles (10°, 15°, and 20°) and two perturbation sources for a range of Mach numbers (1.10–1.40) and two shock tube expansion chamber lengths (2.0 and 4.0 m). It was found that the length of the Mach stem of the reflection pattern is the overall vertical distance traveled by the triple point. Images with equivalent Mach stem lengths in the order of 2.0 m were produced. All tests showed evidence of the fourth wave of the GR, namely the expansion wave behind the reflected shock wave. A shocklet terminating the expansion wave was also identified in a few cases mainly for incident wave Mach numbers of approximately 1.20.  相似文献   

11.
Recent experimental and numerical studies of weak Mach reflections are examined. It is shown that the fundamental reason for the von Neumann paradox is that his theory of Mach reflection is based on the assumption that the flow downstream of the reflected wave and the Mach shock near the wave triple point is uniform. The assumption is shown to be valid for strong Mach reflection which agrees with experiment, but invalid for weak Mach reflection which does not agree with experiment. It is also shown that viscous effects are dominant when the incident shock is within about 100 mean free path lengths of the corner, but not otherwise. The analytical theory of the entire subsonic region supports these conclusions.  相似文献   

12.
Three-dimensional effects on regular reflection in steady supersonic flows   总被引:1,自引:0,他引:1  
The reflection of shock waves between two symmetrical wedges is investigated for the case of three-dimensional flows. Oblique shadowgraphs at various optical angles of yaw and pitch were used to examine the nature of fully three-dimensional flows, with wedge aspect ratios as low as 0.25 being considered. These images were used to construct surface models of the overall flow field for various reflection patterns and aspect ratios, which provides a visual indication of the flow field shape. For a Mach number of 3.1, and suitable wedge angles, the flow field with regular reflection on the tunnel centreline and Mach reflection further out is examined. The point of transition from regular reflection to the peripheral Mach surfaces is identified for various wedge angles and aspect ratios. It is shown that the transition points move outwards from the central plane as the aspect ratio decreases. This shows that three-dimensional flows favor regular reflection, because of the increasing curvature of the incident shock as the wedge becomes narrower, causing a decrease in the local angle of incidence. The height of the Mach stem is shown to be highly dependent on the geometry of the test wedge models. The Mach stem height decreases with aspect ratio due to the three-dimensional relieving effect, where the increase in lateral flow relieves the pressure over the surfaces of the wedges. Experimental evidence of the existence of the strong oblique shock solution in steady flows is presented.Received: 7 July 2003, Revised: 20 October 2003, Accepted: 6 November 2003, Published online: 10 February 2004PACS: 47.40.Nm Correspondence to: B.W. Skews  相似文献   

13.
Experiments have been conducted in a large shock tube to examine the four-wave shock reflection pattern, now known as Guderley reflection (GR). The fourth wave, an expansion, is clearly identified, as is the supersonic patch behind the reflected wave. A shocklet terminating the supersonic patch behind the reflected wave is identified, which forms a second triple point further down the Mach stem. Evidence is presented showing the presence of more than one expansion wave and more than one shocklet, thus indicating the existence of more than one supersonic patch. In order to distinguish between cases with a single patch without the shocklet as originally proposed by Guderley and found in some computations, and the indications of a multi-patch geometry found here, and also in other computations, this latter case is designated Guderley Mach reflection (GMR). Multi-exposure images of the shock propagation superimposed on a single image frame enable estimates to be made of the strength of the major waves, and it is shown that the reflected wave is very weak.   相似文献   

14.
The Mach reflection of shock waves in those cases in which the gas ideality condition is satisfied with high accuracy is well-known. The effects associated with the excitation of the internal degrees of freedom for the molecules lead to a qualitative change in the reflection pattern. The present study is an extension of [1, 2], devoted to the study of the Mach reflection of shock waves from a wedge under conditions in which the physical and chemical transformations in the gas heated by the shock wave play a significant role.  相似文献   

15.
分析了滑移线延长线与楔面交点附近的流动特点,研究了准定常强激波反射中马赫杆的变形,建立了马赫杆突出变形消失的过渡准则,并用激波极曲线方法进行了求解。对马赫杆的变形过程进行了描述,研究了比热比、马赫数的变化对马赫杆突出变形消失条件的影响,并对突出变形消失区域与终点双马赫反射区域进行了比较。结果表明:马赫杆突出变形的消失是低比热比介质中出现的一种激波反射现象。马赫杆突出变形的消失,导致出现一种新的无射流、直马赫杆的双马赫反射结构。  相似文献   

16.
In this article, the interaction of a normal shock with a yawed wedge moving at supersonic speed has been considered. The vorticity distribution of a particle over the diffracted shock wave for various combinations of yawed angles, Mach number of the shock wave and Mach number of the moving wedge have been obtained. Further triple point angle χ in Mach reflection has been calculated for the various parameters.   相似文献   

17.
Numerical simulations have been performed to investigate the stability of shock wave reflection in supersonic steady flow. Wall deflection control has been applied just downstream of the reflection point in the regular reflection configuration. The results provide the magnitude of the disturbance required to cause transition from one configuration to the other throughout the range of incident shock angle. An argument focusing on the subsonic region generated behind the Mach stem in the Mach reflection configuration explains the mechanism of the transition. Numerical results show that both regular and Mach reflections are possible in the dual-solution domain, and also indicate the presence of the hysteresis effect. The transition processes and the stability of the possible states are shown to be described consistently by an analogy based on the potential energy of a particle on a surface. The necessity of more sophisticated experimental investigations is emphasized to verify the argument about the stability of shock reflections and proposed analogy. Received 17 March 1997 / Accepted 26 February 1998  相似文献   

18.
B. W. Skews 《Shock Waves》1994,4(3):145-154
A study to determine the general gas dynamic behaviour associated with the impact of a shock wave on a porous wedge has been undertaken. A number of interesting features are noted. The pattern of wave reflection is shown to be significantly affected by the inflow of gas into the wedge. This has the effect of reducing the triple point trajectory angle for cases of Mach reflection and for strongly reducing the reflection angle in regular reflection. The permeability of the wedge has a significant effect on the strength of the reflected wave and in some cases this wave can be attenuated to the extent that it is almost eradicated. Pressure measurements taken under the wedge are characterized by oscillations which are of similar shape, for a given wedge, over a range of shock wave Mach numbers. It is shown that the wave transmitted into the wedge is attenuated to varying degrees depending on the material properties, and that for weak incident waves the mean propagation velocity can be less than the sound speed in the pore fluid. Photographs taken using a specially constructed wedge which allows the transmitted wave to be visualised, show that the transmitted wave is nearly plane.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

19.
D. Q. Xu  H. Honma 《Shock Waves》1991,1(1):43-49
A numerical simulation was performed for the process of formation of single Mach reflection on a wedge by solving a BGK type kinetic equation for the reduced distribution function with a finite difference scheme. The calculations were carried out for a shock Mach number 2.75 and wedge angle 25° in a monatomic gas, which corresponds to the conditions of single Mach reflection in the classical von Neumann theory. The calculations were performed for both diffuse and specular reflection of molecules at the wall surface. It is concluded that the diffuse reflection of molecules at the wall surface or the existence of the viscous or thermal layer is an essential factor for a nonstationary process at the initial stage of Mach reflection. Furthermore, the numerical results for diffuse reflection are found to simulate the experimental results very well, such as a transient process from regular reflection to Mach reflection along with shock propagation.This article was processed using Springer-Verlag TEX Shock Waves macro package 1990.  相似文献   

20.
Conical Mach reflections differ from those of the equivalent plane, two-dimensional Mach reflection because in axisymmetry, the disturbances generated at the reflecting surface are modified by their more rapidly increasing or decreasing area as they move towards or away from the centerline. Equations for conical Mach reflection cases have now been developed using a simplified ray-shock theory formulation based on the initial assumption that the stem is straight and normal to the wall. These are in a form that applies generally. Their simple structure provides an easy conceptual understanding of self-similarity and non-self-similarity as well as a clear mathematical approach for the development of the curved triple-point locus of the latter by integration. They provide a quick and direct solution in all cases and can easily incorporate the Mach stem curvature by progressively calculating the new ray direction. A range of cases has been considered and results are presented for converging and diverging, self-similar and non-self-similar cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号