首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We describe a method to analyze the sequence specificity of an RNA-binding domain. The method, which we have named scaffold-independent analysis, reports on the specificity for each nucleotide position within an RNA target, uncoupled from the surrounding structural and sequence context. We expect this information to improve our understanding of protein-RNA interfaces in ssRNA binding domains (e.g., KH or RRM domains) and to be useful to the design of novel protein-RNA recognition surfaces. Our NMR binding assays using the third KH domain of the Nova-1 protein provide a proof-of-principle for the method and novel information on the specificity of this domain for its RNA targets.  相似文献   

2.
3.
The RNA recognition motif (RRM), one of the most common RNA-binding domains, recognizes single-stranded RNA. A C-terminal helix that undergoes conformational changes upon binding is often an important contributor to RNA recognition. The N-terminal RRM of the U1A protein contains a C-terminal helix (helix C) that interacts with the RNA-binding surface of a beta-sheet in the free protein (closed conformation), but is directed away from this beta-sheet in the complex with RNA (open conformation). The dynamics of helix C in the free protein have been proposed to contribute to binding affinity and specificity. We report here a direct investigation of the dynamics of helix C in the free U1A protein on the nanosecond time scale using time-resolved fluorescence anisotropy. The results indicate that helix C is dynamic on a 2-3 ns time scale within a 20 degrees range of motion. Steady-state fluorescence experiments and molecular dynamics simulations suggest that the dynamical motion of helix C occurs within the closed conformation. Mutation of a residue on the beta-sheet that contacts helix C in the closed conformation dramatically destabilizes the complex (Phe56Ala) and alters the steady-state fluorescence, but not the time-resolved fluorescence anisotropy, of a Trp in helix C. Mutation of Asp90 in the hinge region between helix C and the remainder of the protein to Ala or Gly subtly alters the dynamics of the U1A protein and destabilizes the complex. Together these results show that helix C maintains a dynamic closed conformation that is stable to these targeted protein modifications and does not equilibrate with the open conformation on the nanosecond time scale.  相似文献   

4.
Terminal deoxynucleotidyl transferase(Td T) has been characterized as template-independent polymerase using single-stranded DNA(ss DNA) as primers to generate random oligonucleotides. However, the extension performance of Td T to single-stranded RNA(ss RNA) is vague. By systematically comparing and contrasting the performance of Td T-catalyzed ss DNA and ss RNA extension, it is indicated that the catalytic efficiency of ss RNA as primers was about 3 times lower than ss DNA as primers. Collective...  相似文献   

5.
It is well known that nucleic acids play an essential role in living organisms because they store and transmit genetic information and use that information to direct the synthesis of proteins. However, less is known about the ability of nucleic acids to bind specific ligands and the application of oligonucleotides as molecular probes or biosensors. Oligonucleotide probes are single-stranded nucleic acid fragments that can be tailored to have high specificity and affinity for different targets including nucleic acids, proteins, small molecules, and ions. One can divide oligonucleotide-based probes into two main categories: hybridization probes that are based on the formation of complementary base-pairs, and aptamer probes that exploit selective recognition of nonnucleic acid analytes and may be compared with immunosensors. Design and construction of hybridization and aptamer probes are similar. Typically, oligonucleotide (DNA, RNA) with predefined base sequence and length is modified by covalent attachment of reporter groups (one or more fluorophores in fluorescence-based probes). The fluorescent labels act as transducers that transform biorecognition (hybridization, ligand binding) into a fluorescence signal. Fluorescent labels have several advantages, for example high sensitivity and multiple transduction approaches (fluorescence quenching or enhancement, fluorescence anisotropy, fluorescence lifetime, fluorescence resonance energy transfer (FRET), and excimer-monomer light switching). These multiple signaling options combined with the design flexibility of the recognition element (DNA, RNA, PNA, LNA) and various labeling strategies contribute to development of numerous selective and sensitive bioassays. This review covers fundamentals of the design and engineering of oligonucleotide probes, describes typical construction approaches, and discusses examples of probes used both in hybridization studies and in aptamer-based assays.  相似文献   

6.
Multi‐domain proteins play critical roles in fine‐tuning essential processes in cellular signaling and gene regulation. Typically, multiple globular domains that are connected by flexible linkers undergo dynamic rearrangements upon binding to protein, DNA or RNA ligands. RNA binding proteins (RBPs) represent an important class of multi‐domain proteins, which regulate gene expression by recognizing linear or structured RNA sequence motifs. Here, we employ segmental perdeuteration of the three RNA recognition motif (RRM) domains in the RBP TIA‐1 using Sortase A mediated protein ligation. We show that domain‐selective perdeuteration combined with contrast‐matched small‐angle neutron scattering (SANS), SAXS and computational modeling provides valuable information to precisely define relative domain arrangements. The approach is generally applicable to study conformational arrangements of individual domains in multi‐domain proteins and changes induced by ligand binding.  相似文献   

7.
Multi‐domain proteins play critical roles in fine‐tuning essential processes in cellular signaling and gene regulation. Typically, multiple globular domains that are connected by flexible linkers undergo dynamic rearrangements upon binding to protein, DNA or RNA ligands. RNA binding proteins (RBPs) represent an important class of multi‐domain proteins, which regulate gene expression by recognizing linear or structured RNA sequence motifs. Here, we employ segmental perdeuteration of the three RNA recognition motif (RRM) domains in the RBP TIA‐1 using Sortase A mediated protein ligation. We show that domain‐selective perdeuteration combined with contrast‐matched small‐angle neutron scattering (SANS), SAXS and computational modeling provides valuable information to precisely define relative domain arrangements. The approach is generally applicable to study conformational arrangements of individual domains in multi‐domain proteins and changes induced by ligand binding.  相似文献   

8.
用UV-Vis吸收光谱、荧光光谱、圆二色谱以及核磁共振光谱等手段研究了硫堇(TH)与两个不同序列寡核苷酸的作用。TH与寡核苷酸作用后的吸收光谱和荧光光谱产生了明显的减色红移和荧光猝灭效应。分别计算了TH与[oligo d(GC)]2和[oligo d(AT)]2作用的荧光猝灭常数和结合常数,结果表明TH与GC序列的结合能力比与AT序列更强。通过TH与[oligo d(GC)]2作用后双螺旋链构象变化以及TH质子的1HNMR谱峰明显变宽,进一步说明TH与寡核苷酸结合的序列选择性。  相似文献   

9.
A useful 2J(N?H) coupling‐based NMR spectroscopic approach is proposed to unveil, at the molecular level, the contribution of the imidazole groups of histidines from RNA/DNA‐binding proteins on the modulation of binding to nucleic acids by pH. Such protonation/deprotonation events have been monitored on the single His96 located at the second RNA/DNA recognition motif (RRM2) of T‐cell intracellular antigen‐1 (TIA‐1) protein. The pKa values of the His96 ionizable groups were substantially higher in the complexes with short U‐rich RNA and T‐rich DNA oligonucleotides than those of the isolated TIA‐1 RRM2. Herein, the methodology applied to determine changes in pKa of histidine side chains upon DNA/RNA binding, gives valuable information to understand the pH effect on multidomain DNA/RNA‐binding proteins that shuttle among different cellular compartments.  相似文献   

10.
11.
12.
The effect of interaction with DNA and oligonucleotides on the photophysical properties of two thiazole orange (TO) derivatives, with different side chains (-(CH2)3-N+(CH3)3 and -(CH2)6-I)) linked to the nitrogen of the quinoline ring of the thiazole orange, is presented here. The first one called TO-PRO1 is a commercially available dye, whereas the second one called TO-MET has been specially synthesized for further covalent binding to oligonucleotides with the aim of being used for specific in situ detection of biomolecular interactions. Both photophysical measurements and molecular calculations have been done to assess their possible mode of interaction with DNA. When dissolved in buffered aqueous solutions both derivatives exhibit very low fluorescence quantum yields of 8 x 10(-5) and 2 x 10(-4), respectively. However, upon binding to double-stranded DNA, large spectroscopic changes result and the quantum yield of fluorescence is enhanced by four orders of magnitude, reaching values up to phi F = 0.2 and 0.3, respectively, as a result of an intercalation mechanism between DNA base pairs. A modulation of the quantum yield is observed as a function of the base sequence. The two derivatives also bind with single-stranded oligonucleotides, but the fluorescence quantum yield is not so great as that when bound to double-stranded samples. Typical fluorescence quantum yields of 7 x 10(-3) to 3 x 10(-2) are observed when the dyes interact with short oligonucleotides, whereas the fluorescence quantum yield remains below 10(-2) when interacting with single-stranded oligonucleotides. This slight but significant quantum-yield increase is interpreted as a folding of the single strand around the dye, which reduces the internal rotation of the two heterocycles around the central methine bridge that links the two moieties of the dye. From these properties, it is proposed to link monomer covalently to oligonucleotides for the subsequent detection of target sequences within cells.  相似文献   

13.
14.
Molecular beacons are sensitive fluorescent probes hybridizing selectively to designated DNA and RNA targets. They have recently become practical tools for quantitative real-time monitoring of single-stranded nucleic acids. Here, we comparatively study the performance of a variety of such probes, stemless and stem-containing DNA and PNA (peptide nucleic acid) beacons, in Tris-buffer solutions containing various concentrations of NaCl and MgCl(2). We demonstrate that different molecular beacons respond differently to the change of salt concentration, which could be attributed to the differences in their backbones and constructions. We have found that the stemless PNA beacon hybridizes rapidly to the complementary oligodeoxynucleotide and is less sensitive than the DNA beacons to the change of salt thus allowing effective detection of nucleic acid targets under various conditions. Though we found stemless DNA beacons improper for diagnostic purposes due to high background fluorescence, we believe that use of these DNA and similar RNA constructs in molecular-biophysical studies may be helpful for analysis of conformational flexibility of single-stranded nucleic acids. With the aid of PNA "openers", molecular beacons were employed for the detection of a chosen target sequence directly in double-stranded DNA (dsDNA). Conditions are found where the stemless PNA beacon strongly discriminates the complementary versus mismatched dsDNA targets. Together with the insensitivity of PNA beacons to the presence of salt and DNA-binding/processing proteins, the latter results demonstrate the potential of these probes as robust tools for recognition of specific sequences within dsDNA without denaturation and deproteinization of duplex DNA.  相似文献   

15.
The tumor suppressor p53 is a hub protein with a multitude of binding partners, many of which target its intrinsically disordered N-terminal domain, p53-TAD. Partners, such as the N-terminal domain of MDM2, induce formation of local structure and leave the remainder of the domain apparently disordered. We investigated segmental chain motions in p53-TAD using fluorescence quenching of an extrinsic label by tryptophan in combination with fluorescence correlation spectroscopy (PET-FCS). We studied the loop closure kinetics of four consecutive segments within p53-TAD and their response to protein binding and phosphorylation. The kinetics was multiexponential, showing that the conformational ensemble of the domain deviates from random coil, in agreement with previous findings from NMR spectroscopy. Phosphorylations or binding of MDM2 changed the pattern of intrachain kinetics. Unexpectedly, we found that upon binding and phosphorylation chain motions were altered not only within the targeted segments but also in remote regions. Long-range interactions can be induced in an intrinsically disordered domain by partner proteins that induce apparently only local structure or by post-translational modification.  相似文献   

16.
A novel derivative of 2',4'-bridged nucleic acid, named hydroxamate-bridged nucleic acid (HxNA), containing a six-membered perhydro-1,2-oxazin-3-one ring, was designed and synthesized. The introduction of a carbonyl function along with an N-O linkage in the six-membered bridged structure is the unique structural feature of the novel 2',4'-bridged nucleic acid analogue. The design was carried out to restrict the flexibility of the sugar moiety through the trigonal planarity of carbonyl function, which would improve the properties of the modification. The synthesized monomer was incorporated into oligonucleotides, and their properties were examined. The HxNA-modified oligonucleotides exhibited selectively high affinity toward complementary ssRNA. Furthermore, the nuclease resistance of the HxNA-modified oligonucleotide was found to be higher than that of the corresponding natural and 2',4'-BNA/LNA-modified oligonucleotides. Interestingly, exposure of HxNA modified oligonucleotide to 3'-exonuclease resulted in gradual opening of the bridge, which stopped further digestion. Moreover, ring-opening of only one modification at the 3'-end of the oligonucleotides was observed, even if two or three HxNA modifications were present in the sequence. The results demonstrate the strong potential of the HxNA modification as a switch for the generation of highly nuclease-resistant RNA selective oligonucleotide in situ, which could have potential applications in antisense technology.  相似文献   

17.
In this work, we report a novel electrochemical RNA aptamer for the selective detection of theophylline. Firstly, gold nanoparticles were electrodeposited on the surface of glassy carbon (GC) electrode to form a gold nanoparticles modified electrode. Secondly, the designed single-stranded RNA (ssRNA) was immobilized on gold nanoparticles through a thiol linker as a probe RNA. Then, the complement stranded RNA, which can combine with the probe ssRNA to form a double-stranded RNA (dsRNA) with a recognition unit of theophylline, was linked on the probe RNA through a hybrid reaction in the presence of theophylline. Doxorubicin was selected as an electrochemical indicator. The proposed RNA aptamer presents an excellent selectivity for the detection of theophylline. The detectable concentration range of theophylline is from 2.0 to 50.0 μM with a limit of detection of 1.2 μM.  相似文献   

18.
19.
Stacking interactions between organic fluorophores can cause formation of non-fluorescent H-dimers. Dimer formation and dissociation of two fluorophores site-specifically incorporated in a biomolecule result in fluorescence intermittency that can report on conformational dynamics. We characterize intramolecular dimerization of two oxazine fluorophores MR121 attached to an unstructured polypeptide. Formation of stable non-fluorescent complexes with nano- to microsecond lifetimes is a prerequisite for analysing the intermittent fluorescence emission by fluorescence correlation spectroscopy and extracting relaxation time constants on nano- to millisecond time scales. Destabilization of the generally very stable homodimers by chemical denaturation reduces the lifetime of H-dimers. We demonstrate that H-dimer formation of an oxazine fluorophore reports on end-to-end contact rates in unstructured glycine-serine polypeptides under denaturing conditions.  相似文献   

20.
Tan L  Li Y  Drake TJ  Moroz L  Wang K  Li J  Munteanu A  Chaoyong JY  Martinez K  Tan W 《The Analyst》2005,130(7):1002-1005
Molecular beacons (MBs) are hairpin-shaped oligonucleotides that contain both fluorophore and quencher moieties. They act like switches and are normally in a closed state, when the fluorophore and the quencher are brought together to turn "off" the fluorescence. When prompted to undergo conformational changes that open the hairpin structure, the fluorophore and the quencher are separated, and fluorescence is turned "on." This Education will outline the principles of MBs and discuss recent bioanalytical applications of these probes for in vitro RNA and DNA monitoring, biosensors and biochips, real-time monitoring of genes and gene expression in living systems, as well as the next generation of MBs for studies on proteins, the MB aptamers. These important applications have shown that MBs hold great potential in genomics and proteomics where real-time molecular recognition with high sensitivity and excellent specificity is critical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号