首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present structural studies of Langmuir (L) and Langmuir-Blodgett (LB) films of new amphiphilic hexa-peri-hexabenzocoronene (HBC) discotics, carrying five branched alkyl side chains and one polar group. The polar group is either a carboxylic acid moiety or an electron acceptor moiety (anthraquinone). Grazing-incidence X-ray diffraction (GIXD) and X-ray reflectivity, both utilizing synchrotron radiation, show that these amphiphilic HBCs form well-defined Langmuir monolayers at the air-water interface, with a pi-stacked columnar structure where the HBC cores are rotated around the surface normal and tilted relative to the water surface. The intercolumnar distance is 20 A. The HBCs are confined to a layer lying on top of the layer of polar groups that are in contact with the water subphase. Efficient transfer of the monolayer of the anthraquinone-substituted HBC derivative to hydrophobic quartz substrates by vertical dipping gave well-defined multilayer Y-type LB films. Polarized optical spectroscopy, GIXD, and X-ray reflectivity measurements show that the LB films consist of at least two phases. Heating the films results in an irreversible rearrangement to a single macroscopically aligned phase of hexagonally packed columns oriented along the dipping direction with disk planes perpendicular to the columnar axes and stacked in a cofacial manner. This phase transition is analogous to the reversible transition observed in the bulk material.  相似文献   

2.
The arrangement of discotic hexa-peri-hexabenzocoronenes (HBCs) into columnar helical superstructures has been investigated in relation to their molecular architecture. The supramolecular structure of two hexaphenyl-substituted HBC derivatives, differing only in the chiral/achiral nature of the attached alkyl side chains, was studied by circular dichroism and temperature-dependent wide-angle X-ray diffraction on oriented filaments. A structural model in agreement with the experimental observations was developed on the basis of accompanying quantum-chemical calculations. The helical organization along the self-assembled columnar structures was induced by the steric requirements of the bulky phenyl rings near the aromatic core, i.e., by their rotation out-of-plane with respect to the aromatic core. On the other hand, a uniform handedness of the twist was generated by chiral alkyl substituents. At higher temperatures the degree of helical organization decreases due to lateral and longitudinal dynamics of the discotic molecules. Annealing at ambient conditions improved the long-range arrangement of the discs along the columnar structures. This reorganization indicated a self-healing of the plastic material which is desirable for application of discotics as active layers in electronic devices. The helical packing resulted in a considerable stability of the mesophase up to 500 degrees C, which has not been reported for a discotic so far.  相似文献   

3.
A series of soluble hexabenzocoronene (HBC) derivatives with pendant optically active (S)-3,7-dimethyloctanyl and (R,S)-3,7-dimethyloctanyl (mixture of stereoisomers) hydrocarbon side chains with and without a phenylene spacer were assembled into differently ordered arrays at the interface between a solution and the basal plane of highly oriented pyrolytic graphite (HOPG). Molecularly resolved scanning tunneling microscopy (STM) images revealed that all derivatives self-assemble into oriented crystals in quasi-two dimensions. However, while for the alkyl-substituted HBCs (1,4) all of the single aromatic cores within a monolayer exhibit the same contrast in the STM, the single aromatic cores with a phenylene group between the alkyl side chains and the aromatic core (2a,2b,3) exhibit different contrasts within a monolayer. For the disks carrying racemic branched or n-alkyl side chains (2b,3) a random distribution of the two different contrasts within the 2D-crystal is observed, while the optically active phenylene-alkyl-substituted HBC (2a) exhibits a periodical distribution of three contrasts within the monolayer. We attribute the different contrasts of the aromatic cores in the presence of the phenylene groups to a loss of the planarity of the whole molecule and different conformations, which allow the conjugated disks to attain different equilibrium positions above the surface of HOPG. In the case of the optically active side chains a regular superstructure with three distinctly different positions such as in a staircase is attained. The self-assembly processes are governed by the interplay of intramolecular as well as intermolecular and interfacial interactions. In the present case, the interactions may induce both the molecules to acquire well distinct positions along the z axis and to adopt different conformations. The reported results open new avenues of exploration. For instance, the different couplings of conjugated molecules with the substrate at different separations can be investigated by means of scanning tunneling spectroscopy (STS). Furthermore, experiments on the STM tip-induced switching of single molecules embedded in a monolayer appear feasible.  相似文献   

4.
Three hexa-peri-hexabenzocoronenes (HBCs) with branched, bulky alkyl substituents of different lengths in the periphery of the aromatic core have been synthesized to tune the self-association properties in solution. 1H NMR and photophysical measurements were used to probe the solution organization in comparison to the known hexa-dodecyl-substituted HBC in different solvent systems. Thermodynamic parameters for the self-association in solution, obtained by curve fitting of the concentration- and temperature-dependent NMR data using van't Hoff analysis, indicated that the self-association is an enthalpically driven process that is entropically disfavored. Photoluminescence and NMR results were both employed to determine the critical concentration where no self-association for different compounds occurred. The interactions between the molecules could be controlled by varying the nonsolvent content in the solvent mixtures, supporting the model of solvophobic effects. The spatial demand of the solubilizing side chains modulated the self-association in solution. This behavior was translated into the solution casting process, where the kinetic in addition to the thermodynamic parameters played an essential role for structure formation. The study illuminates the relationship between the solution association of HBCs and the morphology, when processed on a surface. These results are essential for the application of these materials in devices.  相似文献   

5.
Fluorinated, contorted hexabenzocoronenes (HBCs) have been synthesized in a facile manner via Suzuki-Miyaura coupling of fluorinated phenyl boronic acids followed by photocyclization and Scholl cyclization. In addition to the molecular conformation observed in previous HBC derivatives, close-contact fluorine-fluorine intramolecular interactions result in a metastable conformation not previously observed. Heating the metastable HBCs above 100 °C irreversibly converts them to the stable conformation, suggesting that the metastable conformation arises from a kinetically arrested state during cyclization.  相似文献   

6.
Disc-shaped hexa-peri-hexabenzocoronenes (HBCs) peripherally substituted by flexible dodecyl chains (molecule 1) or rigid polyphenylene dendrons (molecules 2a,b and 3) were efficiently synthesized. Steric hindrance arising from the substituents, from less hindered dodecyl to bulky dendrons, was utilized to program the self-assembly of the HBC cores in solution. The high tendency of the hexadodecyl-substituted HBC 1 to aggregate was determined by concentration and temperature-dependent (1)H NMR spectroscopic measurements and nonlinear least-squares analysis of the experimental data. The rigid dendrons in molecule2a suppress the pi--pi interactions of the HBC cores to a certain extent, and a slow (with respect to the NMR time scale) monomer--dimer equilibrium is observed. This unique equilibrium was further controlled by temperature, concentration, and solvent to afford discrete monomeric or dimeric species. Further structural modifications such as the replacement of dodecyl groups in 2a with hydrogen atoms resulted in a stable dimer structure in 2b due to diminished steric hindrance, as supported by quantum chemical calculations. "Moving" the dendron arms closer to the HBC core gives molecule 3, which exists only as a nonaggregated monomer. UV-vis absorption and fluorescence spectra of these discrete species revealed obvious differences in their electronic and optoelectronic properties which can be explained by the existence or absence of pi--pi interactions.  相似文献   

7.
The structure of a thin zone-cast film of the hexa-n-dodecyl-substituted hexa-peri-benzocoronene (HBC) has been investigated using grazing incidence X-ray diffraction. A model with an orthorhombic unit cell containing two molecules accounts well for the observations. The molecules are arranged in a "herringbone" structure resembling the packing observed for unsubstituted HBC. The molecular disk planes are oriented perpendicularly to the substrate, rotated by approximately 39 degrees about the film normal. The relatively long side chains of dodecyl were found to be in an ordered interdigitated state. The aliphatic side chains and the aromatic HBC-cores segregate to form regular vertical domains spanning the film thickness. For in-plane rocking scans a discrete orientation distribution is observed with peaks at regular angle intervals. We interpret this as a grain boundary effect induced by alkyl chain stacking faults.  相似文献   

8.
A remarkable, regiospecific hydrogenation zips around the approximately 4 nm perimeter of hexa-peri-hexabenzocoronenes (HBC) adding 18 hydrogen atoms, leading to the first peralkylated coronenes, in quantitative yields in some cases. Increasing steric bulk of side chains was found to hinder the reaction, while unsubstituted HBC could be converted to a modest extent despite its vanishing solubility. The structures of the novel coronenes are unequivocally confirmed by MALDI-TOF, 1H, 13C, and heteronuclear correlation NMR, and UV-vis absorption spectroscopy. The puckered-ring periphery of these discotics does not prohibit self-assembly to columnar structures in a fashion similar to that of the planar precursors, as determined from wide-angle X-ray diffraction, but decreases the isotropization temperature by approximately 300 degrees C relative to the latter. Branching in the alkyl chains frustrates nucleation from the melt, resulting in clear polymorphism depending on the thermal treatment. Nonetheless, preliminary measurements indicate high charge-carrier mobilities and lifetimes within the bulk material, on the same order as those previously found for HBCs.  相似文献   

9.
Perylene- as well as naphthalenediimides were fused to hexabenzocoronenes (HBCs) at their imide position to realize highly π-extended donor–acceptor (D–A)-hybrids. Successful isomer separation in the first step was decisive to guarantee a straightforward synthetic sequence. Hexaphenylbenzenes as precursors were accessed via Diels–Alder reactions and reacted in a Scholl oxidation to yield the respective HBC derivatives. The fully conjugated benzimidazole linker, which separates the electron donating HBC from the electron accepting rylenediimide, enabled the formation of either a linear or a helical configuration. Largely different chemical, physical, and optoelectrical characteristics were noted for the two configurations. What stood out was their aggregation and their excited state deactivation depending on the solvent polarity. Results from global analysis of the femtosecond transient absorption data corroborated the formation of a charge-transfer (CT) state that is stabilized in the helically fused configuration relative to the linear analogue. However, a comparison with spectroelectrochemical experiments failed to disclose evidence for a charge-separated (CS) state.  相似文献   

10.
Porphyrin–hexabenzocoronene architectures serve as good model compounds to study light-harvesting systems. Herein, the synthesis of porphyrin functionalized hexa-peri-hexabenzocoronenes (HBCs), in which one or more porphyrins are covalently linked to a central HBC core, is presented. A series of hexaphenylbenzenes (HPBs) was prepared and reacted under oxidative coupling conditions. The transformation to the respective HBC derivatives worked well with mono- and tri-porphyrin-substituted HPBs. However, if more porphyrins are attached to the HPB core, Scholl oxidations are hampered or completely suppressed. Hence, a change of the synthetic strategy was necessary to first preform the HBC core, followed by the introduction of the porphyrins. All products were fully characterized, including, if possible, single-crystal XRD. UV/Vis absorption spectra of porphyrin-HBCs showed, depending on the number of porphyrins as well as with respect to the substitution pattern, variations in their spectral features with strong distortions of the porphyrins’ B-band.  相似文献   

11.
Strong dipole moments have been built into two hexa-peri-hexabenzocoronene (HBC) derivatives (1 and 2) originating from the push-pull structure of the molecules with one electron-donating and one electron-withdrawing substituent. The influence of dipole moment on the self-assembly of HBCs in solution and in bulk has been investigated.  相似文献   

12.
Materials based upon hexa‐peri‐hexabenzocoronenes (HBCs) show significant promise in a variety of photovoltaic applications. There remains the need, however, for a soluble, versatile, HBC‐based platform, which can be tailored by incorporation of electroactive groups or groups that can prompt self‐assembly. The synthesis of a HBC–fluorene hybrid is presented that contains an expanded graphitic core that is highly soluble, resists aggregation, and can be readily functionalized at its vertices. This new HBC platform can be tailored to incorporate six electroactive groups at its vertices, as exemplified by a facile synthesis of a representative hexaaryl derivative of FHBC. Synthesis of new FHBC derivatives, containing electroactive functional groups that can allow controlled self‐assembly, may serve as potential long‐range charge‐transfer materials for photovoltaic applications.  相似文献   

13.
Materials based upon hexa‐peri‐hexabenzocoronenes (HBCs) show significant promise in a variety of photovoltaic applications. There remains the need, however, for a soluble, versatile, HBC‐based platform, which can be tailored by incorporation of electroactive groups or groups that can prompt self‐assembly. The synthesis of a HBC–fluorene hybrid is presented that contains an expanded graphitic core that is highly soluble, resists aggregation, and can be readily functionalized at its vertices. This new HBC platform can be tailored to incorporate six electroactive groups at its vertices, as exemplified by a facile synthesis of a representative hexaaryl derivative of FHBC. Synthesis of new FHBC derivatives, containing electroactive functional groups that can allow controlled self‐assembly, may serve as potential long‐range charge‐transfer materials for photovoltaic applications.  相似文献   

14.
15.
Feng X  Wu J  Enkelmann V  Müllen K 《Organic letters》2006,8(6):1145-1148
[reaction: see text] Oligophenylene precursors based on 1,3,5-tris-(2'-biphenyl)ylbenzene (4a) and 1,4-bis-(2'-biphenyl)yl-2,5-diphenylbenzene (5a) were prepared and utilized for efficient hexabenzocoronene (HBC) synthesis by cyclodehydrogenations. Parent HBC 6a was efficiently synthesized from the 1,3,5-tris-(2'-biphenyl)ylbenzene precursor, and novel D(3)(h)() symmetrical HBCs were prepared from 1,3,5-tris-(2'-biphenyl)ylbenzenes with various substitution types. For the preparation of a tert-butyl containing HBC 7 with D(2)(h)() symmetry, a two-step cyclodehydrogenation was required because of changes in the spin density distribution.  相似文献   

16.
Surface structures of several different poly(dimethylsiloxane) (PDMS) materials, tetraethoxysilane-cured hydroxy-terminated PDMS (TEOS-PDMS), platinum-cured vinyl-terminated PDMS (Pt-PDMS), platinum-cured vinyl-terminated poly(diphenylsiloxane)-co-poly(dimethylsiloxane) (PDPS-co-PDMS), and PDMS-co-polystyrene (PDMS-co-PS) copolymer in air and water have been investigated by sum frequency generation (SFG) vibrational spectroscopy. The SFG spectra collected from all PDMS surfaces in both air and water are dominated by methyl group stretches, indicating that all the surfaces are mainly covered by methyl groups. Other than surface-dominating methyl groups, some -Si-CH2-CH2- moieties on the Pt-PDMS surface have also been detected in air, which are present at cross-linking points. Information about the average orientation angle and angle distribution of the methyl groups on the PDMS surface has been evaluated. Surface restructuring of the methyl groups has been observed for all PDMS surfaces in water. Upon contacting water, the methyl groups on all PDMS surfaces tilt more toward the surface. The detailed restructuring behaviors of several PDMS surfaces in water and the effects of molecular weight on restructuring behaviors have been investigated. For comparison, in addition to air and water, surface structures of PDMS materials mentioned above in a nonpolar solvent, FC-75, have also been studied. By comparing the different response of phenyl groups to water on both PDPS-co-PDMS and PS-co-PDMS surfaces, we have demonstrated how the restructuring behaviors of surface phenyl groups are affected by the structural flexibility of the molecular chains where they are attached.  相似文献   

17.
Novel amphiphilic block molecules consisting of a rigid 2‐phenylthiophene or 5‐phenylbithienyl core, with a polar glycerol group attached to the phenyl ring and one or two alkyl chains attached to the thiophene ring on the other side, have been synthesised by using Ni(0) and Pd(0) catalyzed coupling reactions as key steps. The thermotropic and solvent‐induced liquid crystalline behaviour of these compounds was investigated by polarising optical microscopy and X‐ray diffraction. The influence of the length, number and position of the alkyl chains, and the length of the rigid core, on their mesophase behaviour was investigated. Compounds with one alkyl chain in the terminal 5‐position on the thiophene ring form only smectic A phases, compounds with two adjacent alkyl chains attached in the 4‐ and 5‐positions of the thiophene ring exhibit thermotropic columnar mesophases, and those with two long alkyl chains attached to the 3‐ and 5‐positions form columnar LC phases only in the presence of water. Another compound containing the longer 5‐phenylbithienyl core unit and two alkyl chains attached in lateral positions to each of the thiophene rings is not mesogenic.  相似文献   

18.
The bottom-up synthesis of 3D tetrakis(hexa-peri-hexabenzocoronenyl)methane, “tetrahedraphene”, is reported. This molecular nanographene constituted by four hexa-peri-hexabenzocoronene (HBC) units attached to a central sp3 carbon atom, shows a highly symmetric arrangement of the HBC units disposed in the apex of a tetrahedron. The X-ray crystal structure reveals a tetrahedral symmetry of the molecule and the packing in the crystal is achieved mostly by CH⋅⋅⋅π interactions since the interstitial solvent molecules prevent the π⋅⋅⋅π interactions. In solution, tetrahedraphene shows the same electrochemical and photophysical properties as the hexa-tBu-substituted HBC (tBu-HBC) molecule. However, upon water addition, it undergoes a fluorescence change in solution and in the precipitated solid, showing an aggregation induced emission (AIE) process, probably derived from the restriction in the rotation and/or vibration of the HBCs. Time-Dependent Density Functional Theory (TDDFT) calculations reveal that upon aggregation, the high energy region of the emission band decreases in intensity, whereas the intensity of the red edge emission signal increases and presents a smoother decay, compared to the non-aggregated molecule. All in all, the excellent correlation between our simulations and the experimental findings allows explaining the colour change observed in the different solutions upon increasing the water fraction.  相似文献   

19.
Peptide sequences modified with lanthanide-chelating groups at their N-termini, or at their lysine side chains, were synthesized, and new Ln(iii) complexes were characterized. We show that partial folding of the conjugates to form trimer coiled coil structures induces coordination of lanthanides to the ligand, which in turn further stabilizes the 3D structure.  相似文献   

20.
Abstract

The dependence of mesomorphism of 1,3-diketonate vanadium-oxo (vanadyl) complexes on the number of side chains was investigated. These complexes have a large dipole normal to the disc plane and are under investigation in an effort to generate discotic phases with polar order. Relatively complex phase behaviour is observed when the vanadyl 1,3-diketonate complexes are appended with four phenyl groups with two octyloxy or decyloxy side chains each for a total of eight side chains. These complexities are most likely related to the order/disorder associated with the polar vanadyl group. Vanadyl 1,3-diketonate complexes with four side chains were prepared by replacement of two of the phenyl groups with methyl or trifluoromethyl groups, and these complexes displayed only crystal phases. Complexes with two trialkyloxy phenyls and two dialkyloxy phenyls were synthesized and found to display a very stable Dhd phase. The presence of additional alkyloxy groups was found also to promote a linear chain structure, (i.e. ??V?O??V?O??), in the crystal phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号