首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The H/D exchange reaction and the rotational dynamics of heavy water (D2O) are studied at 50 degrees C in the ionic liquid, 1-butyl-3-methylimidazolium chloride ([bmim][Cl]), in the [D2O] range of 3-55 M. The initial H/D exchange rates are observed as 1.0 x 10(-7), 4.5 x 10(-6), 1.0 x 10(-5), 4.1 x 10(-5), 1.1 x 10(-4), and 3.7 x 10(-4) s(-1), respectively, at [D2O] of 2.8, 7.1, 8.1, 11, 15, and 25 M. The rate is very slow and less than 10(-5) s(-1) at [D2O] below approximately 7 M. It steeply increases to the order of 10(-4)s(-1) for 7 M < [D2O] < 10 M, and linearly increases with [D2O] in the more water-rich region. The intercept of the linear region at [D2O] = approximately 9 M is interpreted by considering that each chloride anion deactivates 1.6 equiv water molecules due to the strong solvation. Correspondingly, the rotational correlation time of D2O at [D2O] < 7 M is 1 order of magnitude larger than that in water-rich conditions.  相似文献   

2.
The self-diffusion of cucurbit[7]uril (CB[7]) and its host-guest complexes in D2O has been examined using pulsed gradient spin-echo nuclear magnetic resonance spectroscopy. CB[7] diffuses freely at a concentration of 2 mM with a diffusion coefficient (D) of 3.07 x 10(-10) m(2) s(-1). At saturation (3.7 mM), CB[7] diffuses more slowly (D = 2.82 x 10(-10) m(2) s(-1)) indicating that it partially self-associates. At concentrations between 2 and 200 mM, CsCl has no effect on the diffusion coefficient of CB[7] (1 mM). Conversely, CB[7] (2 mM) significantly affects the diffusion of 133Cs+ (1 mM), decreasing its diffusion coefficient from 1.86 to 0.83 x 10(-9) m(2) s(-1). Similar changes in the rate of diffusion of other alkali earth metal cations are observed upon the addition of CB[7]. The diffusion coefficient of 23Na+ changes from 1.26 to 0.90 x 10(-9) m(2) s(-1) and 7Li+ changes from 3.40 to 3.07 x 10(-9) m(2) s(-1). In most cases, encapsulation of a variety of inorganic and organic guests within CB[7] decreases their rates of diffusion in D2O. For instance, the diffusion coefficient of the dinuclear platinum complex trans-[[PtCl(NH3)2}2mu-dpzm](2+) (where dpzm is 4,4'-dipyrazolylmethane) decreases from 4.88 to 2.95 x 10(-10) m(2) s(-1) upon encapsulation with an equimolar concentration of CB[7].  相似文献   

3.
The apparent second-order rate constant (k OH) for hydroxide-ion-catalyzed conversion of 1 to N-(2'-methoxyphenyl)phthalamate (4) is approximately 10(3)-fold larger than k OH for alkaline hydrolysis of N-morpholinobenzamide (2). These results are explained in terms of the reaction scheme 1 --> k(1obs) 3 --> k(2obs) 4 where 3 represents N-(2'-methoxyphenyl)phthalimide and the values of k(2obs)/k(1obs) vary from 6.0 x 10(2) to 17 x 10(2) within [NaOH] range of 5.0 x 10(-3) to 2.0 M. Pseudo-first-order rate constants (k(obs)) for alkaline hydrolysis of 1 decrease from 21.7 x 10(-3) to 15.6 x 10(-3) s(-1) with an increase in ionic strength (by NaCl) from 0.5 to 2.5 M at 0.5 M NaOH and 35 degrees C. The values of k obs, obtained for alkaline hydrolysis of 2 within [NaOH] range 1.0 x 10(-2) to 2.0 M at 35 degrees C, follow the relationship k(obs) = kOH[HO(-)] + kOH'[HO (-)] (2) with least-squares calculated values of kOH and kOH' as (6.38 +/- 0.15) x 10(-5) and (4.59 +/- 0.09) x 10(-5) M (-2) s(-1), respectively. A few kinetic runs for aqueous cleavage of 1, N'-morpholino-N-(2'-methoxyphenyl)-5-nitrophthalamide (5) and N'-morpholino-N-(2'-methoxyphenyl)-4-nitrophthalamide (6) at 35 degrees C and 0.05 M NaOH as well as 0.05 M NaOD reveal the solvent deuterium kinetic isotope effect (= k(obs) (H 2) (O)/ k(obs) (D 2 ) (O)) as 1.6 for 1, 1.9 for 5, and 1.8 for 6. Product characterization study on the cleavage of 5, 6, and N-(2'-methoxyphenyl)-4-nitrophthalimide (7) at 0.5 M NaOD in D2O solvent shows the imide-intermediate mechanism as the exclusive mechanism.  相似文献   

4.
By the use of [1H,15N] heteronuclear single quantum coherence (HSQC) 2D NMR spectroscopy and electrochemical methods we have determined the hydrolysis profile of the bifunctional dinuclear platinum complex [[trans-PtCl(15NH3)2]2(mu-15NH2(CH2)(6)15NH2)]2+ (1,1/t,t (n = 6), 15N-1), the prototype of a novel class of potential antitumor complexes. Reported are estimates for the rate and equilibrium constants for the first and second aquation steps, together with the acid dissociation constant (pKa1 approximately pKa2 approximately pKa3). The equilibrium constants determined by NMR at 25 and 37 degrees C (I = 0.1 M) were similar, pK1 approximately pK2 = 3.9 +/- 0.2, and from a chloride release experiment at 37 degrees C the values were found to be pK1 = 4.11 +/- 0.05 and pK2 = 4.2 +/- 0.5. The forward and reverse rate constants for aquation determined from this chloride release experiment were k1 = (8.5 +/- 0.3) x 10(-5) s-1 and k-1 = 0.91 +/- 0.06 M-1 s-1, where the model assumed that all the liberated chloride came from 1. When the second aquation step was also taken into account, the rate constants were k1 = (7.9 +/- 0.2) x 10(-5) s-1, k-1 = 1.18 +/- 0.06 M-1 s-1, k2 = (10.6 +/- 3.0) x 10(-4) s-1, k-2 = 1.5 +/- 0.6 M-1 s-1. The rate constants compare favorably with other complexes with the [PtCl(am(m)ine)3]+ moiety and indicate that the equilibrium of all these species favors the chloro form. A pKa value of 5.62 was determined for the diaquated species [[trans-Pt(15NH3)2(H2O)]2(mu-15NH2(CH2)(6)15NH2)]4+ (3) using [1H,15N] HSQC NMR spectroscopy. The speciation profile of 1 and its hydrolysis products under physiological conditions is explored.  相似文献   

5.
Catalysis of the beta-elimination reaction of N-[2-(4-pyridyl)ethyl]quinuclidinium (1) and N-[2-(2-pyridyl)ethyl]quinuclidinium (2) by Zn(2+) and Cd(2+) in OH(-)/H(2)O (pH = 5.20-6.35, 50 degrees C, and mu = 1 M KCl) has been studied. In the presence of Zn(2+), the elimination reactions of both isomers occur from the Zn(2+)-complexed substrates (C). The equilibrium constants for the dissociation of the Zn(2+)-complexes are as follows: K(d) = 0.012 +/- 0.003 M (isomer 1) and K(d) = 0.065 +/- 0.020 M (isomer 2). The value of k(C)(H2O) for isomer 1 is 4.81 x 10(-6) s(-1). For isomer 2 both the rate constants for the "water" and OH(-)-induced reaction of the Zn(2+)-complexed substrate could be measured, despite the low concentration of OH(-) in the investigated reaction mixture [k(C)H2O)= 1.97 x 10(-6) s(-1) and k(C)(OH-)= 21.9 M(-1) s(-1), respectively]. The measured metal activating factor (MetAF), i.e., the reactivity ratio between the complexed and the uncomplexed substrate, is 8.1 x 10(4) for the OH(-)-induced elimination of 2. This high MetAF can be compared with the corresponding proton activating factor (Alunni, S.; Conti, A.; Palmizio Errico, R. J. Chem. Soc., Perkin Trans. 2 2000, 453), PAF = 1.5 x 10(6) and is in agreement with an E1cb irreversible mechanism (A(xh)D(E)* + D(N)) (Guthrie, R. D.; Jencks, W. P. Acc. Chem. Res. 1989, 22, 343). A value of k(C)(H2O)>or= 23 x 10(-7) s(-1) is estimated for the Cd(2+)-complexed isomer 2, while catalysis by Cd(2+) has not been observed for isomer 1.  相似文献   

6.
Zheng YQ  Lin JL  Xu W  Xie HZ  Sun J  Wang XW 《Inorganic chemistry》2008,47(22):10280-10287
Seven new glutaric acid complexes, Co(H 2O) 5L 1, Na 2[CoL 2] 2, Na 2[L(H 2L) 4/2] 3, {[Co 3(H 2O) 6L 2](HL) 2}.4H 2O 4, {[Co 3(H 2O) 6L 2](HL) 2}.10H 2O 5, {[Co 3(H 2O) 6L 2]L 2/2}.4H 2O 6, and Na 2{[Co 3(H 2O) 2]L 8/2].6H 2O 7 were obtained and characterized by single-crystal X-ray diffraction methods along with elemental analyses, IR spectroscopic and magnetic measurements (for 1 and 2). The [Co(H 2O) 5L] complex molecules in 1 are assembled into a three-dimensional supramolecular architecture based on intermolecular hydrogen bonds. Compound 2 consists of the Na (+) cations and the necklace-like glutarato doubly bridged [ C o L 4 / 2 ] 2 - infinity 1 anionic chains, and 3 is composed of the Na (+) cations and the anionic hydrogen bonded ladder-like [ L ( H 2 L ) 4 / 2 ] 2 - infinity 1 anionic chains. The trinuclear {[Co 3(H 2O) 6L 2](HL) 2} complex molecules with edge-shared linear trioctahedral [Co 3(H 2O) 6L 2] (2+) cluster cores in 4 and 5 are hydrogen bonded into two-dimensional (2D) networks. The edge-shared linear trioctahedral [Co 3(H 2O) 6L 2] (2+) cluster cores in 6 are bridged by glutarato ligands to generate one-dimensional (1D) chains, which are then assembled via interchain hydrogen bonds into 2D supramolecular networks. The corner-shared linear [Co 3O 16] trioctahedra in 7 are quaternate bridged by glutarato ligands to form 1D band-like anionic {[Co 3(H 2O) 2]L 8/2} (2+) chains, which are assembled via interchain hydrogen bonds into 2D layers, and between them are sandwiched the Na (+) cations. The magnetic behaviors of 1 and 2 obey the Curie-Weiss law with chi m = C/( T - Theta) with the Curie constant C = 3.012(8) cm (3) x mol (-1) x K and the Weiss constant Theta = -9.4(7) K for 1, as well as C = 2.40(1) cm (3) x mol (-1) x K and Theta = -2.10(5) K for 2, indicating weak antiferromagnetic interactions between the Co(II) ions.  相似文献   

7.
Yang M  Yu J  Di J  Li J  Chen P  Fang Q  Chen Y  Xu R 《Inorganic chemistry》2006,45(9):3588-3593
Three new open-framework transition-metal borophosphates Na5(H3O){M(II)3[B3O3(OH)]3(PO4)6}.2H2O (M(II) = Mn, Co, Ni) (denoted as MBPO-CJ25) have been synthesized under mild hydrothermal conditions. Single-crystal X-ray diffraction analyses reveal that the three compounds possess isostructural three-dimensional (3D) open frameworks with one-dimensional 12-ring channels along the [001] direction. Notably, the structure can also be viewed as composed of metal phosphate layers [M(II)(PO4)2]4- with Kagomé topology, which are further connected by [B3O7(OH)] triborates, giving rise to a 3D open framework. The guest water molecules locate in the 12-ring channels. Partial Na+ ions reside in the 10-ring side pockets within the wall of the 12-ring channels, and the other Na+ ions and protonated water molecules locate in the 6-ring windows delimited by MO6 and PO4 polyhedra to compensate for the negative charges of the anionic framework. These compounds show a high thermal stability and are stable upon calcinations at ca. 500 degrees C. Ionic conductivities, due to the motion of Na+ ions, are measured for these three compounds. They have similar activation energies of 1.13-1.25 eV and conductivities of 2.7 x 10(-7)-9.9 x 10(-7) S cm(-1) at 300 degrees C. Magnetic measurements reveal that there are very weak antiferromagnetic interactions among the metal centers of the three compounds. Crystal data: MnBPO-CJ25, hexagonal, P6(3)/m (No. 176), a = 11.9683(5) A, c = 12.1303(6) A, and Z = 2; CoBPO-CJ25, hexagonal, P6(3)/m (No. 176), a = 11.7691(15) A, c = 12.112(2) A, and Z = 2; NiBPO-CJ25, hexagonal, P6(3)/m (No. 176), a = 11.7171(5) A, c = 12.0759(7) A, and Z = 2.  相似文献   

8.
The di-Zn(II) complex of 1,3-bis[ N1, N1'-(1,5,9-triazacyclododecyl)]propane with an associated methoxide ( 3:Zn(II) 2: (-)OCH 3) was prepared and its catalysis of the methanolysis of a series of fourteen methyl aryl phosphate diesters ( 6) was studied at s (s)pH 9.8 in methanol at 25.0 +/- 0.1 degrees C. Plots of k obs vs [ 3:Zn(II) 2: (-)OCH 3] free for all members of 6 show saturation behavior from which K(M) and kcat (max) were determined. The second order rate constants for the catalyzed reactions (kcat (max)/K(M)) for each substrate are larger than the corresponding methoxide catalyzed reaction (k 2 (-OMe)) by 1.4 x 10(8) to 3 x 10 (9)-fold. The values of k cat (max) for all members of 6 are between 4 x 10(11) and 3 x 10(13) times larger than the solution reaction at s (s)pH 9.8, with the largest accelerations being given for substrates where the departing aryloxy unit contains ortho-NO 2 or C(O)OCH 3 groups. Based on the linear Br?nsted plots of k cat (max) vs s (s)pKa of the phenol, beta lg values of -0.57 and -0.34 are determined respectively for the catalyzed methanolysis of "regular" substrates that do not contain the ortho-NO 2 or C(O)OCH 3 groups, and those substrates that do. The data are consistent with a two step mechanism for the catalyzed reaction with rate limiting formation of a catalyst-coordinated phosphorane intermediate, followed by fast loss of the aryloxy leaving group. A detailed energetics calculation indicates that the catalyst binds the transition state comprising [CH 3O (-): 6], giving a hypothetical [ 3:Zn(II) 2:CH 3O (-): 6] complex, by -21.4 to -24.5 kcal/mol, with the strongest binding being for those substrates having the ortho-NO 2 or C(O)OCH 3 groups.  相似文献   

9.
We have measured 13C NMR spectra of uranyl(V) carbonate complex in D2O solution containing 1.003 M Na2(13)CO3 at various temperatures. Two singlet signals corresponding to free and coordinated CO3(2-) were observed at 169.13 and 106.70 ppm, respectively. From the peak area ratio, the structure of the uranyl(V) carbonate complex was determined as [U(V)O2(CO3)3]5-. Furthermore, kinetic analyses of the exchange reaction of free and coordinated CO3(2-) in [U(V)O2(CO3)3]5- were carried out using 13C NMR line-broadening. As a result, the first-order rate constant at 298 K and the activation parameters for CO3(2-) exchange reaction in [U(V)O2(CO3)3]5- were evaluated as 1.13 x 10(3) s(-1) and deltaH(double dagger) = 62.0 +/- 0.7 kJ x mol(-1), deltaS(double dagger) = 22 +/- 3 J x mol(-1) x K(-1), respectively. We suggest that the exchange follows a dissociative mechanism as in the corresponding [U(VI)O2(CO3)3]4- complex.  相似文献   

10.
Kim M  Picot A  Gabbaï FP 《Inorganic chemistry》2006,45(14):5600-5606
The reaction of the palladium(II) acetate derivative [Pd(NwedgeC)(OAc)]2 (NwedgeC = (NC5H4-2-C6H4(C2,N) or (2-(2-pyridyl)-phenyl-C,N)) with methylparathion and water in THF leads to the formation of [Pd(NwedgeC)(mu-SP(=O)(OCH3)2)]2 (1), which reacts with PPh3 in THF to afford mononuclear complex [Pd(NwedgeC)(SP(=O)(OCH3)2)(PPh3)] (2). Compounds 1 and 2 have been characterized by 1H, 13C, and 31P NMR spectroscopy; elemental analysis; and single-crystal X-ray diffraction. When dissolved in water, 1 serves as a precatalyst for the hydrolysis of methylparathion. Kinetic and spectroscopic studies suggest that compound 1 dissociates in aqueous solution to afford cationic diaqua complex [Pd(NwedgeC)(OH2)2]+ (A). At basic pH, A is converted into its deprotonated form [Pd(NwedgeC)(OH2)(OH)] (B), which dimerizes to afford a dinuclear complex, presumably [Pd(NwedgeC)(mu-OH)]2 (C). At pH 7, the reaction is first order in substrate and first order in palladium catalyst A, with k2 = 146 +/- 9 M(-1) s(-1) at 303 K. At more-basic pH, the reaction rate increases and shows an apparent half-order dependence in palladium catalyst. These observations suggest that the active form of the catalyst at basic pH is B, whose concentration is controlled by an equilibrium with inactive C. Analysis of the data obtained at pH 9 yields a dimer formation constant K(f) = [C]/[B]2 = (6.6 +/- 5.6) x 10(6) M(-1) and a second-order rate constant k2 of (8.6 +/- 3.6) x 10(3) M(-1) s(-1) at 298 K. The pH dependence of the reaction rate as well as a spectroscopic titration indicates that the pKa of A is in the 9.5-9.7 range. Determination of the activation parameters at both pH 7 and 9 suggests that catalysis occurs via an associative mechanism whose rate-determining step involves the substitution of a water ligand of A by a molecule of methylparathion at neutral pH and nucleophilic attack of the phosphorus center of methylparathion by a hydroxide ligand of B at basic pH.  相似文献   

11.
Rates of steady oxygen-isotope exchange differ in interesting ways for two sets of structural oxygens in the [HxTa6O19](8-x)-(aq) Lindqvist ion when compared to published data on the [HxNb6O19]8-x(aq) version. Because of the lanthanide contraction, the [HxTa6O19](8-x)-(aq) and [HxNb6O19](8-x)-(aq) ions are virtually isostructural and differ primarily in a full core (Kr vs Xe) and the 4f14 electrons in the [HxTa6O19](8-x)-(aq) ion. For both molecules, both pH-dependent and -independent pathways are evident in isotopic exchange of the 12 mu2-O(H) and 6 eta=O sites. Rate parameters for eta=O exchange at conditions where there is no pH dependence are, for the Ta(V) and Nb(V) versions respectively, K(298)(0) = 2.72 x 10(-5) s(-1) and 9.7 x 10(-6) s(-1), DeltaH = 83.6 +/- 3.2 and 89.4 kJ.mol(-1), and DeltaS = -51.0 +/- 10.6 and -42.9 J.mol(-1).K-1. For the mu2-O sites, K(298)(0) = 1.23 x 10(-6) s(-1), DeltaH = 70.3 +/- 9.7 and 88.0 kJ.mol(-1), and DeltaS = -116.1 +/- 32.7 and -29.4 J.mol(-1).K-1. Protonation of the 6 eta=O sites is energetically unfavored relative to the 12 mu2-O bridges in both molecules, although not equally so. Experimentally, protonation labilizes both the mu2-O(H) and eta=O sites to isotopic exchange in both molecules. Density-functional electronic-structure calculations indicate that proton affinities of structural oxygens in the two molecules differ with the [HxTa6O19](8-x)-(aq) anion having a smaller affinity to protonate than the [HxNb6O19]8-x(aq) ion. This difference in proton affinities is evident in the solution chemistry as pKa = 11.5 for the [HTa6O19]7-(aq) ion and pKa = 13.6 for the [HNb6O19]7-(aq) ion. Most striking is the observation that eta=O sites isotopically equilibrate faster than the mu2-O sites for the [HxTa6O19](8-x)-(aq) Lindqvist ion but slower for the [HxNb6O19](8-x)-(aq) ion, indicating that predictions about site reactivities in complicated structures, such as the interface of aqueous solutions and oxide solids, should be approached with great caution.  相似文献   

12.
We demonstrate detection, in the gas-phase, of O(1D2) at concentrations down to 10(7) cm(-3) and develop this new method for time-resolved kinetic studies allowing both the total removal rate of O(1D2), of up to 1.5 x 10(6) s(-1), and the fraction quenched to O(3P(J)) by species X, k(q)/k(X), to be determined precisely from a single time profile: at 295 K we find, k(O(1D2) + N2O) = (1.43 +/- 0.08) x 10(-10) cm3 s(-1) with k(q)/k(N2O) = 0.056 +/- 0.009; k(O(1D2) + C2H2) = (3.1 +/- 0.2) x 10(-10) cm3 s(-1) with k(q)/k(C2H2) = 0.020 +/- 0.010; k(q)/k(H2O) < 0.003 for O(1D2) + H2O.  相似文献   

13.
The binding dynamics of R-(+)-2-naphthyl-1-ethylammonium cation (NpH(+)) with cucurbit[7]uril (CB[7]) was investigated. Competitive binding with Na(+) or H(3)O(+) cations enabled the reaction to be slowed down sufficiently for the kinetics to be studied by fluorescence stopped-flow experiments. The binding of two Na(+) cations to CB[7], i.e., CB[7]·Na(+) (K(01) = 130 ± 10 M(-1)) and Na(+)·CB[7]·Na(+) (K(02) = 21 ± 2 M(-1)), was derived from the analysis of binding isotherms and the kinetic studies. NpH(+) binds only to free CB[7] ((1.06 ± 0.05) × 10(7) M(-1)), and the association rate constant of (6.3 ± 0.3) × 10(8) M(-1) s(-1) is 1 order of magnitude lower than that for a diffusion-controlled process and much higher than the association rate constant previously determined for other CB[n] systems. The high equilibrium constant for the NpH(+)@CB[7] complex is a consequence of the slow dissociation rate constant of 55 s(-1). The kinetics results showed that formation of a complex between a positively charged guest with CB[n] can occur at a rate close to the diffusion-controlled limit with no detection of a stable exclusion complex.  相似文献   

14.
Mechanochemical reaction of cluster coordination polymers 1infinity[M3Q7Br4] (M = Mo, W; Q = S, Se) with solid K2C2O4 leads to cluster core excision with the formation of anionic complexes [M3Q7(C2O4)3]2-. Extraction of the reaction mixture with water followed by crystallization gives crystalline K2[M3Q7(C2O4)3].0.5KBr.nH2O (M = Mo, Q = S, n = 3 (1); M = Mo, Q = Se, n = 4 (2); M = W, Q = S, n = 5 (3)). Cs2[Mo3S7(C2O4)3].0.5CsCl.3.5H2O (4) and (Et4N)1.5H0.5K{[Mo3S7(C2O4)3]Br}.2H2O (5) were also prepared. Close Q...Br contacts result in the formation of ionic triples {[M3Q7(C2O4)3](2)Br}5- in 1-4 and the 1:1 adduct {[Mo3S7(C2O4)3]Br}3- in 5. Treatment of 1 or 2 with PPh(3) leads to chalcogen abstraction with the formation of [Mo3(mu3-Q)(mu2-Q)3(C2O4)3(H2O)3]2-, isolated as (Ph4P)2[Mo3(mu3-S)(mu2-S)3(C2O4)3(H2O)3].11H2O (6) and (Ph4P2[Mo3(mu3-Se)(mu2-Se)3(C2O4)3(H2O)3].8.5H2O.0.5C2H5OH (7). All compounds were characterized by X-ray structure analysis. IR, Raman, electronic, and 77Se NMR spectra are also reported. Thermal decomposition of 1-3 was studied by thermogravimetry.  相似文献   

15.
The aquachromyl ion, Cr(IV)aqO2+, reacts with the hydrides L(H2O)RhH2+ (L = L1 = [14]aneN4 and L2 = meso-Me6-[14]aneN4) in aqueous solutions in the presence of molecular oxygen to yield Cr(aq)3+ and the superoxo complexes L(H2O)RhOO2+. At 25 degrees C, the rate constants are approximately 10(4) M(-1) s(-1) (L = L1) and 1.12 x 10(3) M(-1) s(-1) (L = L2). Both reactions exhibit a moderate deuterium isotope effect, kRhH/kRhD = approximately 3 (L1) and 3.3 (L2), but no solvent isotope effect, kH2O/kD2O = 1. The proposed mechanism involves hydrogen atom abstraction followed by the capture of LRh(H2O)2+ with molecular oxygen. There is no evidence for the formation of L(H2O)Rh2+ in the reaction between L(H2O)RhH2+ and (salen)CrVO+. The proposed hydride transfer is supported by the magnitude of the rate constants (L = L1, k = 8,800 M(-1) s(-1); (NH3)4, 2,500; L2, 1,000) and isotope effects (L = L1, kie = 5.4; L2, 6.2). The superoxo complex [L1(CH3CN)RhOO](CF3SO3)2.H2O crystallizes with discrete anions, cations, and solvate water molecules in the lattice. All moieties are linked by a network of hydrogen bonds of nine different types. The complex crystallized in the triclinic space group P1 with a = 9.4257(5) A, b = 13.4119(7) A, c = 13.6140(7) A, alpha = 72.842(1)degrees, beta = 82.082(1) degrees, gamma = 75.414(1) degrees, V = 1587.69(14) A3, and Z = 2.  相似文献   

16.
Jiang L  Choi HJ  Feng XL  Lu TB  Long JR 《Inorganic chemistry》2007,46(6):2181-2186
Reactions between K[TpFe(CN)3] (Tp- = hydrotris(1-pyrazolyl)borate) and M(ClO4)2 x 6H2O (M = Co or Ni) in a mixture of acetonitrile and methanol afford, upon crystallization via THF vapor diffusion, [Tp8(H2O)12Co6Fe8(CN)24](ClO4)4.12THF x 7H2O (1) and [Tp8(H2O)12Ni6Fe8(CN)24](ClO4)4.12THF x 7H2O (2). Both compounds contain cyano-bridged clusters with a face-centered cubic geometry, wherein octahedral CoII or NiII centers are situated at the face-centering sites. The results of variable-temperature magnetic susceptibility measurements indicate the presence of ferromagnetic exchange coupling within both molecules to give ground states of S = 7 and 10, respectively. Low-temperature magnetization data reveal significant zero-field splitting, with the best fits for the Co6Fe8 and Ni6Fe8 clusters yielding D = -0.54 and 0.21 cm-1, respectively; ac magnetic susceptibility measurements performed on both samples showed no evidence of the slow relaxation effects associated with single-molecule magnet behavior.  相似文献   

17.
The electron self-exchange rate constants for the (trimethylammonio)methylferrocene(+/2+) couple (FcTMA+/2+) have been measured in the absence and presence of the cucurbit[7]uril (CB[7]) host molecule in aqueous solution, using 1H NMR line-broadening experiments. The very strong binding of the ferrocene to CB[7] results in slow exchange of the guest on the NMR time scale, such that resonances for both the free and bound forms of the reduced ferrocene can be observed. The extents of line broadening in the resonances of the two forms of the guest in the presence of the FcTMA2+ species can be monitored independently, allowing for the determination of the rate constants for the possible self-exchange pathways involving the bound and free forms of both the oxidized and reduced members of the redox couple. The encapsulation of both the reduced and oxidized forms of the ferrocene increases the rate constant (25 degrees C) from (2.1+/-0.1)x10(6) M-1 s-1 (for FcTMA+/2+) to (6.7+/-0.7)x10(6) M(-1) s(-1) (for {FcTMA.CB[7]}+/2+), whereas inclusion of the reduced form only decreases the rate constant to (6+/-1)x10(5) M(-1) s(-1). The changes in the exchange rate constants upon inclusion of the reactants are related to the effects of CB[7] acting as an outer, second-coordination sphere and are compared to those observed previously for the electron-exchange process in the presence of beta-cyclodextrin and p-sulfonated calix[6]arene hosts. The binding of FcTMA+ and hydroxymethylferrocene to CB[7] significantly reduces the rate constants for their oxidations by the bis(2,6-pyridinedicarboxylato)cobaltate(III) ion (which does not bind to CB[7]) as a result of reduced thermodynamic driving forces and steric hindrance to close approach of the oxidant to the encapsulated ferrocenes.  相似文献   

18.
The oxidations of benzyl alcohol, PPh3, and the sulfides (SEt2 and SPh2) (Ph = phenyl and Et = ethyl) by the Os(VI)-hydrazido complex trans-[Os(VI)(tpy)(Cl)2(NN(CH2)4O)](2+) (tpy = 2,2':6',2' '-terpyridine and O(CH2)4N(-) = morpholide) have been investigated in CH3CN solution by UV-visible monitoring and product analysis by gas chromatography-mass spectrometry. For benzyl alcohol and the sulfides, the rate law for the formation of the Os(V)-hydrazido complex, trans-[Os(V)(tpy)(Cl)2(NN(CH2)4O)](+), is first order in both trans-[Os(VI)(tpy)(Cl)2(NN(CH2)4O)](2+) and reductant, with k(benzyl) (25.0 +/- 0.1 degrees C, CH3CN) = (1.80 +/- 0.07) x 10(-4) M(-1) s(-1), k(SEt2) = (1.33 +/- 0.02) x 10(-1) M(-1) s(-1), and k(SPh2) = (1.12 +/- 0.05) x 10(-1) M(-1) s(-1). Reduction of trans-[Os(VI)(tpy)(Cl)2(NN(CH2)4O)](2+) by PPh3 is rapid and accompanied by isomerization and solvolysis to give the Os(IV)-hydrazido product, cis-[Os(IV)(tpy)(NCCH3)2(NN(CH2)4O)](2+), and OPPh3. This reaction presumably occurs by net double Cl-atom transfer to PPh3 to give Cl2PPh3 that subsequently undergoes hydrolysis by trace H2O to give the final product, OPPh3. In the X-ray crystal structure of the Os(IV)-hydrazido complex, the Os-N-N angle of 130.9(5) degrees and the Os-N bond length of 1.971(7) A are consistent with an Os-N double bond.  相似文献   

19.
The isomeric ferrocene phosphine-carboxamides, 1-(diphenylphosphino)-1'-{[N-(2-pyridyl)-methyl]carbamoyl}ferrocene (1) and 1-(diphenylphosphino)-1'-{[N-(4-pyridyl)methyl]carbamoyl}ferrocene (2) have been studied as ligands in group-12 metal bromide complexes. The reactions of 1 with CdBr2 x 4H2O and HgBr(2) at 1:1 mole ratio gave the discrete tetracadmium complex [Cd2(micro-Br)2(-1kappa2O,N2)2[micro-1kappa2O,N2:2kappaP-(C5H4N)CH2NHC(O)fcPPh2-CdBr3]2] (7; fc = ferrocene-1,1'-diyl) and the halogeno-bridged dimer [[Hg(micro-Br)Br(-kappaP)]2] (8), respectively. In the presence of acetic acid, the CdBr2-1 system furnished a zwitterionic complex featuring protonated 1 as the P-monodentate donor, [CdBr3[Ph2PfcC(O)NHCH2(C5H4NH)-kappaP]] x H2O (6 x H2O). Under neutral conditions, compound , whose terminal donor groups are better arranged for the formation of extended assemblies, gave rise to one-dimensional coordination polymers [MBr2[micro(P,N)-]](n) (M = Cd, 4; M = Hg, ). The crystal structures of 2 x H2O, its corresponding phosphine oxide (3 x H2O), and complexes 4, 5, 6 x H2O, and have been determined, revealing extensive hydrogen bonding interactions in the solid state.  相似文献   

20.
The di- and tetranuclear metal sandwich-type silicotungstates of Cs10[(gamma-SiW10O36)2{Zr(H2O)}2(mu-OH)2] x 18 H2O (Zr2, monoclinic, C2/c (No. 15), a = 25.3315(8) A, b = 22.6699(7) A, c = 18.5533(6) A, beta = 123.9000(12) degrees, V = 8843.3(5) A(3), Z = 4), Cs10[(gamma-SiW10O36)2{Hf(H2O)}2(mu-OH)2] x 17 H2O (Hf2, monoclinic, space group C2/c (No. 15), a = 25.3847(16) A, b = 22.6121(14) A, c = 18.8703(11) A, beta = 124.046(3) degrees, V = 8974.9(9) A(3), Z = 4), Cs8[(gamma-SiW10O36)2{Zr(H2O)}4(mu4-O)(mu-OH)6] x 26 H2O (Zr4, tetragonal, P4(1)2(1)2 (No. 92), a = 12.67370(10) A, c = 61.6213(8) A, V = 9897.78(17) A(3), Z = 4), and Cs8[(gamma-SiW10O36)2{Hf(H2O)}4(mu4-O)(mu-OH)6] x 23 H2O (Hf4, tetragonal, P4(1)2(1)2 (No. 92), a = 12.68130(10) A, c = 61.5483(9) A, V = 9897.91(18) A(3), Z = 4) were obtained as single crystals suitable for X-ray crystallographic analyses by the reaction of a dilacunary gamma-Keggin silicotungstate K8[gamma-SiW10O36] with ZrOCl2 x 8 H2O or HfOCl2 x 8 H2O. These dimeric polyoxometalates consisted of two [gamma-SiW10O36](8-) units sandwiching metal-oxygen clusters such as [M2(mu-OH)2](6+) and [M4(mu4-O)(mu-OH)6](8+) (M = Zr or Hf). The dinuclear zirconium and hafnium complexes Zr2 and Hf2 were isostructural. The equatorially placed two metal atoms in Zr2 and Hf2 were linked by two mu-OH ligands and each metal was bound to four oxygen atoms of two [gamma-SiW10O36](8-) units. The tertanuclear zirconium and hafnium complexes Zr4 and Hf4 were isostructural and consisted of the adamantanoid cages with a tetracoordinated oxygen atom in the middle, [M4(mu4-O)(mu-OH)6](8+) (M = Zr or Hf). Each metal atom in Zr4 and Hf4 was linked by three mu-OH ligands and bound to two oxygen atoms of the [gamma-SiW10O36](8-) unit. The tetra-nuclear zirconium and hafnium complexes showed catalytic activity for the intramolecular cyclization of (+)-citronellal to isopulegols without formation of byproducts resulting from etherification and dehydration. A lacunary silicotungstate [gamma-SiW10O34(H2O)2](4-) was inactive, and the isomer ratio of isopulegols in the presence of MOCl2 x 8 H2O (M = Zr or Hf) were much different from that in the presence of tetranuclear complexes, suggesting that the [M4(mu4-O)(mu-OH)6](8+) core incorporated into the POM frameworks acts as an active site for the present cyclization. On the other hand, the reaction hardly proceeded in the presence of dinuclear zirconium and hafnium complexes under the same conditions. The much less activity is possibly explained by the steric repulsion from the POM frameworks in the dinuclear complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号