首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 991 毫秒
1.
利用分子动力学模拟的方法从分子水平上研究了气/液界面上β-环糊精(β-CD)与十六烷基三甲基溴化铵(CTAB)包结物的形成. 对β-CD与CTAB摩尔比分别为1∶1和2∶1的两个体系进行了模拟研究, 体系的能量、径向分布函数和均方根位移变化的结果表明, β-CD与CTAB分子可以在气/液界面上形成包结物, 相对而言, 更易形成1∶1型包结物.  相似文献   

2.
新型近红外试剂的合成及其现场二聚体与DNA作用的研究   总被引:6,自引:0,他引:6  
合成了一种新型近红外阴离子染料,并对其水溶液及阳离子表面活性剂CTAB存在下的吸收荧光光谱进行了研究。结果表明,低浓度的CTAB与该近红外阴离子染料形成离子缔合物而使阴离子染料的荧光强度降低,当CTAB的浓度进一步加大时,其胶束前预聚集促使该染料形成非荧光二聚体,导致荧光急剧猝灭。  相似文献   

3.
We have used dissipative particle dynamics (DPD) to simulate the system of cetyltrimethylammonium bromide (CTAB) monolayer at the oil/water interface. The interfacial properties (interfacial density, interfacial thickness, and interfacial tension), structural properties (area compressibility modulus, end to end distance, and order parameter), and their dependence on the oil/water ratio and the surfactant concentration were investigated. Three different microstructures, spherical oil in water (o/w), interfacial phase, and water in oil (w/o), can be clearly observed with the oil/water ratio increasing. Both the snapshots and the density profiles of the simulation show that a well defined interface exists between the oil and water phases. The interface thickens with CTAB concentration and oil/water ratio. The area compressibility modulus decreases with an increase in the oil/water ratio. The CTAB molecules are more highly packed at the interface and more upright with both concentration and oil/water ratio. The root mean square end-to-end distance and order parameter have a very weak dependence on the oil/water ratio. But both of them show an increase with CTAB concentration, indicating that the surfactant molecules at the interface become more stretched and more ordered at high concentration. As CTAB concentration increases further, the order parameter decreases instead because the bending of the interface. At the same time, it is shown that CTAB has a high interfacial efficiency at the oil/water interface.  相似文献   

4.
In this article, we discuss the structure and composition of mixed DNA-cationic surfactant adsorption layers on both hydrophobic and hydrophilic solid surfaces. We have focused on the effects of the bulk concentrations, the surfactant chain length, and the type of solid surface on the interfacial layer structure (the location, coverage, and conformation of the DNA and surfactant molecules). Neutron reflectometry is the technique of choice for revealing the surface layer structure by means of selective deuteration. We start by studying the interfacial complexation of DNA with dodecyltrimethylammonium bromide (DTAB) and hexadecyltrimethylammonium bromide (CTAB) on hydrophobic surfaces, where we show that DNA molecules are located on top of a self-assembled surfactant monolayer, with the thickness of the DNA layer and the surfactant-DNA ratio determined by the surface coverage of the underlying cationic layer. The surface coverages of surfactant and DNA are determined by the bulk concentration of the surfactant relative to its critical micelle concentration (cmc). The structure of the interfacial layer is not affected by the choice of cationic surfactant studied. However, to obtain similar interfacial structures, a higher concentration in relation to its cmc is required for the more soluble DTAB surfactant with a shorter alkyl chain than for CTAB. Our results suggest that the DNA molecules will spontaneously form a relatively dense, thin layer on top of a surfactant monolayer (hydrophobic surface) or a layer of admicelles (hydrophilic surface) as long as the surface concentration of surfactant is great enough to ensure a high interfacial charge density. These findings have implications for bioanalytical and nanotechnology applications, which require the deposition of DNA layers with well-controlled structure and composition.  相似文献   

5.
The natural packaging of DNA in the cell by histones provides a particular environment affecting its sensitivity to oxidative damage. In this work, we used the complexation of DNA by cationic surfactants to modulate the conformation, the dynamics, and the environment of the double helix. Photo-oxidative damage initiated by benzophenone as the photosensitizer on a plasmid DNA complexed by dodecyltrimethylammonium chloride (DTAC), tetradecyltrimethylammonium chloride (TTAC), cetyltrimethyammonium chloride (CTAC) and bromide (CTAB) was detected by agarose gel electrophoresis. By fluorescent titration in the presence of ethidium bromide (EB) and agarose gel electrophoresis, we experimentally confirmed the complexation diagrams with a critical aggregation concentration on DNA matrix (CAC DNA) delimiting two regions of complexation, according to the DNA-phosphate concentration. The study of the photo-oxidative damage shows, for the first time, a direct correlation between the DNA complexation by these surfactants and the efficiency of DNA cleavage, with a maximum corresponding to the CAC DNA for DTAC and CTAC, and to DNA neutralization for CTAC and CTAB. The localization of a photosensitizer having low water solubility, such as benzophenone, inside the hydrophobic domains formed by the surfactant aggregated on DNA, locally increases the photoinduced cleavage by the free radical oxygen species generated. The inefficiency of a water-soluble quencher of hydroxyl radicals, such as mannitol, confirmed this phenomenon. The detection of photo-oxidative damage constitutes a new tool for investigating DNA complexation by cationic surfactants. Moreover, highlighting the drastically increased sensitivity of a complexed DNA to photo-oxidative damage is of crucial importance for the biological use of surfactants as nonviral gene delivery systems.  相似文献   

6.
Mesoporous SBA-16 and SBA-15 were studied in order to control their possible morphologies. SBA-16 is synthesized using a silicon source (tetraethoxysilane, TEOS) and a ternary system consisting of surfactant F127 (EO106PO70EO106), water, and butanol. The same ternary system, with higher butanol concentration, is used to form SBA-15 material as well. An increase of the TEOS concentration results in a morphology shift of SBA-16 from micron-sized spheres, over randomly shaped aggregated particles, to macrospheres with a size of 15 mm. An identical increase in TEOS concentration also results in the formation of SBA-15 macrospheres, which can be controlled in size. Micron-sized spheres of SBA-15 were formed using a quaternary system of surfactant P123 (EO20PO70EO20), cetyltrimethylammonium bromide (CTAB), ethanol, and water. All mesoporous silica materials were characterized using SEM, XRD, and N2 sorption techniques.  相似文献   

7.
Measurements of surface tension of aqueous solutions of cetyltrimethylammonium bromide (CTAB) and propanol mixtures (gamma(L)) for 1 x1 0(-5), 1 x 10(-4), 6 x 10(-4), and 1 x 10(-3) M concentrations of CTAB as a function of propanol concentration in the range from 0 to 6.67 M at 293 K were carried out. The obtained results indicate that there is first-order exponential relationship between the surface tension and propanol concentration in the solution at constant CTAB concentration. These results were compared with those calculated from the equations derived by von Szyszkowski, Joos, Miller et al. From the comparison it resulted that the values of gamma(L) determined by the Szyszkowski equation are correlated with those measured only in a limited propanol concentration range because of changes of the constant related to the specific capillary activity in this equation as a function of propanol concentration, particularly in the range of its high concentration. In the case of the modified Joos equation there is a correlation between the calculated and measured values of gamma(L) only at a very low concentration of propanol. The values of the surface tension of aqueous solutions of CTAB and propanol mixtures determined by the relationships of Miller et al. at CTAB concentration, corresponding to unsaturated surface layer in the absence of propanol, are close to those measured, but there are bigger differences between the calculated and measured values of the surface tension for solutions at a constant value of CTAB concentration close to CMC. However, the values of the surface tension of aqueous solution of CTAB and propanol mixtures calculated from the modified Miller et al. equation, in which the aggregation process of alcohol molecules at water-air interface was taken into account, are in excellent agreement with those measured. The measured values of the surface tension and the Gibbs equations were used for determination of the surface excess of CTAB and propanol concentration at solution-air interface. The obtained results indicate that at the constant concentration of CTAB equal to 1 x 10(-5) and 1 x 10(-4) M there is a maximum of excess concentration of propanol in the surface region at its bulk concentration close to 1 M. Using the calculated values of the surface excess concentration of propanol and CTAB at solution-air interface and assuming the proper thickness of the interface region, the total values of their concentration in this region were evaluated. Next, the standard surface free energy of CTAB and propanol mixtures adsorption was calculated. The calculated values of this energy indicate that the tendency to adsorb molecules of CTAB and propanol decreases with increasing propanol concentration probably because of entropy of adsorption decrease resulting from water structure destruction by propanol molecules.  相似文献   

8.
The critical micelle concentration (CMC) of cetyl trimethylammonium bromide (CTAB) in both water and ethanol-water-mixed solvent was determined using steady-state fluorescence techniques in order to investigate the effect of the self-assembling properties of the surfactant on the template synthesis of porous inorganic materials. Results indicated that the CMC increased with the increase of ethanol concentration in the mixed solvent. The CMC of CTAB is 0.0009 mol/L in water, while it is 0.24 mol/L in ethanol. Furthermore, the dissipative particle dynamics (DPD) was adopted to simulate the aggregation of CTAB in water and ethanol/water mixtures, and the energy difference was calculated for the surfactant tail groups after mixing with the solvent. The simulation results reflected a regularity similar to the experimental data, i.e., tail groups of CTAB interacted more strongly with ethanol than with groups of CTAB interacted more strongly with ethanol than with water, which elucidates the reason that the micelle is difficult to form in ethanol. __________ Translated from Journal of Tianjin University, 2006, 39(1) (in Chinese)  相似文献   

9.
Based on the studies of their physical properties such as aqueous solution uptake, electric conductivity, and microstructure, CTAB/hexanol/water reverse micelles (CTAB, cetyltrimethyl ammonium bromide) were used to prepare ZrO2-Y2O3 nanoparticles. The relationship between the micelle microstructure and size, morphology, and aggregate properties of particles prepared was also investigated. It has been found that with high CTAB concentration ([CTAB] > 0.8 mol/l), the reverse micelles can solubilize a sufficient amount of aqueous solution with high metallic ion concentration ( approximately 1.0 mol/L), while the microstructure of the reverse micelles keeps unchanged. The most important factor affecting the size and shape of reverse micelles was found to be the water content w0 (w0, molar ratio of water to surfactant used). When both the CTAB concentration and the w0 values are low, the diameters of reverse micelles are below 20 nm, and the ZrO2-Y2O3 particles prepared are also very small. However, the powders obtained were found to form a lot of aggregates after drying and calcination. High CTAB concentration, high w0 value, and high metallic ion concentration in the aqueous phase for high powder productivity were found to be the suitable compositions of reverse micelles for preparing high-quality ZrO2-Y2O3 nanoparticles. Under these conditions, the reverse micelles are still spherical in shape even the reverse micellar system is nearly saturated with aqueous solutions. These reverse micelles were found to have a diameter of between 60 and 150 nm and the ZrO2-Y2O3 particles prepared therefrom range from 30 to 70 nm with spherical shape and not easy to form aggregates. Copyright 1999 Academic Press.  相似文献   

10.
The interaction between pepsin and CTAB has been elaborately studied with a number of techniques. The enzyme-induced interaction produced complexes, aggregates, and micelles of CTAB with distinct physicochemical features. It was found that at very low surfactant concentration (much below the critical micellar concentration (cmc) of pure CTAB), the surfactant got adsorbed both in monomeric and lower aggregated forms to the high-energy sites of the native biopolymer, leading to enhanced hydrophobicity of the combine, and hence, lowering of the interfacial (air/solution) tension. This was followed by the formation of a faintly turbid solution of the polymer-surfactant coacervate. The CTAB interacted unfolded pepsin along with the surfactant monomer remained adsorbed at the interface to decrease the interfacial tension (gamma) to a low level to produce a break in the gamma vs log [CTAB] plot prior to the normally observed extended cmc (cmce) in presence of polymers. The cac-like aggregation (as observed in tensiometry and viscometry) was not found in conductometry and microcalorimetry, whereas microcalorimetry evidenced the formation of the cmce of CTAB in the presence of the biopolymer. The CTAB influenced structural features of the pepsin were assessed from spectral, viscometric, and circular dichroism measurements.  相似文献   

11.
The aggregation behavior between carboxymethylchitosan (CMCHS) and cetyltrimethylammonium bromide (CTAB) is investigated by MesoDyn simulation and experimental techniques, for increasing CTAB concentrations. Mixed CMCHS/CTAB bulk aggregates are formed in the solution. Simulation results give the morphologies of aggregates clearly and illustrate the two stages for the formation of aggregates: the first stage is CTAB molecules aggregating on the CMCHS chain and the second stage is the equilibrium stage. A viscosity maximum and a hydrodynamic radius minimum at a certain CTAB concentration reveal the bridging structure of the polymer chains by the micelles. Transmission electron microscopy (TEM) images give the bridging structure clearly. At higher surfactant concentrations, light scattering and TEM show the existence of larger structures, whose size increases with CTAB concentration. According to the simulation and experimental results, the process of aggregate formation and aggregation mechanism are analyzed. Initially CMCHS and CTAB form network structure due to the bridge action of CTAB micelles, while the network structure disappears gradually and is replaced by ellipsoidal CMCHS/CTAB aggregate structure with CTAB concentration increasing.  相似文献   

12.
邬瑞光  尉志武 《化学通报》2004,67(6):439-443
研究十六烷基三甲基溴化铵(CTAB)对DNA分子热稳定性的影响对于认识阳离子表面活性剂与DNA二者之间的相互作用具有重要的意义。用差示扫描量热法和变温紫外光谱法研究了CTAB对鲑鱼精DNA及降解的鲱鱼精DNA热稳定性的影响,发现CTAB使鲑鱼精DNA的热稳定性降低,但降低程度随CTAB浓度的增大而先增大后减小;CTAB使鲱鱼精DNA发生了两阶段熔解行为。  相似文献   

13.
Different experimental methods including ellipsometry, zeta potential measurements, imbibition studies, and contact angle measurements were used to study the mechanism and influencing factors of wettability alteration of water-wet sandstone surface caused by CTAB (hexadecyl trimethyl ammonium bromide). Results show that when the concentration of CTAB reaches a certain level (below CMC), due to the electrostatic attraction between the positively charged head groups of CTAB and the negatively charged sandstone surface, the monolayer of CTAB is formed and hydrophobic chains of CTAB molecules are toward the aqueous phase, making the solid surface oil-wet. When the concentration of CTAB continues to increase (above CMC), due to the hydrophobic interaction, the compact bilayer of CTAB is formed and hydrophilic head groups of CTAB molecules are toward the aqueous phase, rendering the solid surface water-wet. The contact angles between the oil–water interface and the surface treated with CTAB increase with the increase of the concentration of NaCl and CaCl2. Compared to NaCl, the inorganic salt CaCl2 has a greater impact on the contact angle. In addition, the contact angles increase with the increase of temperature and decrease with the increase of pH value of the aqueous solution.  相似文献   

14.
The study of the adsorption behavior of surfac-which makes people further study the adsorptiontants to interfaces is very important in colloid and in-mechanism at the molecular level.terface science[1]owing to the important applications In situ AFM measur…  相似文献   

15.
Thermoreversible hydrogels of agarose with both high and low molecular weights were studied by means of a fluorescence probe method using 1‐anilino‐8‐naphthalene sulfonic acid (ANS). The fluorescence spectra of ANS in agarose/water changed markedly with agarose concentration. Analysis of the spectra shows that this change is not due to a shift of the whole spectrum, but that there are two fluorescent components of ANS in addition to the fluorescence peak at 542 nm due to free ANS molecules in water. The fluorescence component at 461 nm is assumed to be from ANS intercalated within either a single 31 helix‐form agarose chain or nonpolar region produced by chemical defect, and the fluorescence component between 507 and 522 nm is assumed to be from ANS in aggregated regions of agarose chains having a loose helical structure. There is no doubt that a certain number of water molecules are included in the aggregated region. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 680–688, 2005  相似文献   

16.
Measurements of contact angles (theta) of aqueous solutions of cetyltrimethylammonium bromide (CTAB) and propanol mixtures at constant CTAB concentration equal to 1x10(-5), 1x10(-4), 6x10(-4) and 1x10(-3) M on polytetrafluoroethylene (PTFE) were carried out. The obtained results indicate that the wettability of PTFE by aqueous solutions of these mixtures depends on their composition and concentration. They also indicate that, contrary to Zisman, there is no linear relationship between cos theta and the surface tension (gamma(LV)), but a linear relationship exists between the adhesional (gamma(LV)cos theta) and surface tension of aqueous solutions of CTAB and propanol mixtures. Curve gamma(LV)cos theta vs gamma(LV) has a slope equal -1 suggesting that adsorption of CTAB and propanol mixtures and the orientation of their molecules at aqueous solution-air and PTFE-aqueous solution interfaces is the same. Extrapolating this curve to the value of gamma(LV)cos theta corresponding to theta=0, the value of the critical tension of PTFE wetting equal 23.4 mN/m was determined. This value was higher than that obtained from contact angles of n-alkanes on PTFE surface (20.24 mN/m). The difference between the critical surface tension values of wetting probably resulted from the fact that at cos theta=1 the PTFE-aqueous solution of CTAB and propanol mixture interface tension was not equal to zero. This tension was determined on the basis of the measured contact angles and Young equation. It appeared that the values of PTFE-aqueous solution of the CTAB and propanol mixtures interface tension can be satisfactorily determined by modified Szyszkowski equation only for solutions in which probably CTAB and propanol molecules are present in monomeric form. However, it appeared that using the equation of Miller et al., in which the possibility of aggregation of propanol molecules in the interface layer is taken into account, it is possible to describe the PTFE-solution interfacial tension for all systems studied in the same way as by the Young equation. On the basis of linear dependence between the adhesional and surface tension it was established that the work of adhesion of aqueous solution of CTAB and propanol mixtures does not depend on its composition and concentration, and the average value of this work was equal to 46.85 mJ/m(2), which was similar to that obtained for adhesion of aqueous solutions of two cationic surfactants mixtures to PTFE surface.  相似文献   

17.
表面活性剂对驱油聚合物界面剪切流变性质的影响   总被引:1,自引:0,他引:1  
利用双锥法研究了表面活性剂十二烷基苯磺酸钠(SDBS)和十六烷基三甲基溴化铵(CTAB)对油田现场用部分水解聚丙烯酰胺(PHPAM)和疏水改性聚丙烯酰胺(HMPAM)溶液的界面剪切流变性质的影响,实验结果表明:HMPAM分子通过疏水作用形成界面网络结构,界面剪切复合模量明显高于PHPAM.SDBS和CTAB通过疏水相互作用与HMPAM分子中的疏水嵌段形成聚集体,破坏界面网络结构,剪切模量随表面活性剂浓度增大明显降低.同时,界面膜从粘性膜向弹性膜转变.低SDBS浓度时,少量SDBS分子与PHPAM形成混合吸附膜,界面膜强度略有升高;SDBS浓度较高时,界面层中PHPAM分子被顶替,吸附膜强度开始减弱.阳离子表面活性剂CTAB通过静电相互作用中和PHPAM分子的负电性,造成聚合物链的部分卷曲,从而降低界面膜强度.弛豫实验结果证实了表面活性剂破坏HMPAM网络结构的机理.  相似文献   

18.
The adsorption isotherms of nonionic surfactants Triton X-100 and Triton X-305 from water and cyclohexane on carbon black have been determined at 15 and 30°C. The Langmuir-type and BET-type isotherms are obtained for adsorption of Triton X-100 and Triton X-305 from water and cyclohexane respectively. Both the contact angles of water for graphite/water/air and graphite/water/cyclohexane decrease monotonously with increasing surfactant concentration. From these results, it is proposed that the adsorption of Triton X-100 and Triton X-305 on carbon black or graphite from water is monolayer. For the adsorption from cyclohexane solutions, the ethyleneoxide group of the surfactant molecules may be adsorbed onto the polar spot at the surface of carbon black, and the hydrophobic group of adsorbed molecules may direct toward the liquid phase or attaches to the nonpolar surface region around the polar spot. As the concentration increases, the ethylene oxide groups of the adsorbed molecules can be aggregated with each other via polar interactions to form hemi-reversed micelle.  相似文献   

19.
Electrostatic-assembly metallized nanoparticles network by DNA template   总被引:1,自引:0,他引:1  
Wu A  Cheng W  Li Z  Jiang J  Wang E 《Talanta》2006,68(3):693-699
Eighteen-nanometer gold and 3.5-nm silver colloidal particles closely packed by cetyltrimethylammonium bromide (CTAB) to form its positively charged shell. The DNA network was formed on a mica substrate firstly. Later, CTAB-capped gold or silver colloidal solutions were cast onto DNA network surface. It was found that the gold or silver nanoparticles metallized networks were formed owing to the electrostatic-driven template assembling of positive charge of CTAB-capped gold and silver particles on the negatively charged phosphate groups of DNA molecules by the characterizations of AFM, XPS and UV-vis. This method may provide a novel and simple way to studying nanoparticles assembly conjugating DNA molecules and offer some potential promising applications in nanocatalysis, nanoelectronics, and nanosensor on the basis of the fabricated metal nanoparticles network.  相似文献   

20.
l-Cysteine molecules dramatically enhance the photoluminescence of colloidal CdSe/ZnSe quantum dots (i.e., CTAB/TOPOQD). Based on our spectroscopic studies of temporal variations in QD quantum yields as well as the in situ infrared spectral features of QDs, we propose that adsorption and rearrangement of l-cysteine molecules at the QD–water interface induces the observed unusual enhancement of the photoluminescence quantum yield. Upon addition of l-cysteine to the CTAB/TOPOQD solution, the adsorption of l-cysteine to the CTAB/TOPOQD colloidal particles is driven by the formation of a kinetically favorable intermediate species, which is formed by the coordination of thiol groups to the QD surface Cd atoms. The above species then reacts further to form a thermodynamically stable QD species, which probably involves coordination of both the amine and thiol groups of l-cysteine on the QD surface. Additional comparison studies using MPAQD and other small ligands (i.e., l-alanine, l-serine, and MPA) confirmed our proposed mechanism of l-cysteine adsorption at the CTAB/TOPOQD–water interfaces. In addition to these adsorption structures, we also propose that the dramatic enhancement of QY observed in this study is probably induced by the rearrangement and structural organization of l-cysteine and CTAB molecules at the QD–water interface, which improves the homogeneity and self-organization of the interfacial molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号