首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 140 毫秒
1.
聚碳硅烷的高温高压生成机理研究   总被引:1,自引:0,他引:1  
分别以聚二甲基硅烷(PDMS)、液态聚硅烷(LPS)及PDMS裂解剩余物(LPCS)为原料,在不同的温度下高压合成聚碳硅烷(PCS),采用红外、紫外、核磁共振、分子量及其分布等分析PCS的组成、结构随温度的变化.同时,采用改变减压蒸馏温度的办法,对PCS进行分级,收集在不同蒸馏温度下的馏分,通过对一系列馏分进行了IR分析,以此推测PCS的转化过程.研究表明,PCS的生成过程是随着温度的升高,PDMS、LPS中键能较低的Si—Si键断裂,逐渐转变成为键能较高的Si—C键,转化为低分子的碳硅烷;随着温度的升高,碳硅烷分子间发生脱氢、脱甲烷缩合反应使产物的分子量逐渐长大,生成PCS.  相似文献   

2.
杨景明  杨露姣  余煜玺  程璇  张颖 《化学学报》2009,67(17):2047-2051
为了研究合成温度对聚铝碳硅烷(PACS)结构的影响, 采用具有Si—C骨架结构的低分子量液态聚碳硅烷(LPCS)与乙酰丙酮铝[Al(AcAc)3]为原料, 在300, 360和420 ℃下分别合成了固态PACS, 并对合成的PACS样品进行元素组成及结构表征. 表征结果显示, 合成温度明显影响样品的Al, O含量及Si—H键数量. 合成温度升高, Al含量与O含量增大, 但PACS中的Si—H键数量急剧减少, 在360 ℃下合成的样品具有理论Al含量, 而在300和420 ℃下合成的样品的Al含量分别小于和大于理论Al含量. 27Al MAS NMR结果显示, Al与O形成AlO4, AlO5和AlO6 三种配位形式. 反应过程中消耗Si—H键形成Si—O—Al交联结构是PACS数均分子量及多分散系数增加的主要原因.  相似文献   

3.
利用Wurtz反应合成聚甲基硅烷 ,研究两类溶剂对其组成、分子结构和分子量的影响 .FT IR和1 H NMR及2 9Si NMR分析表明 ,以甲苯为溶剂 ,可以避免在溶剂化过程中Kumada重排的发生 ;而以THF 正己烷 (1∶6 ,V V)为溶剂 ,聚甲基硅烷容易支化和形成Si—CH2 —Si结构 .研究发现 ,聚甲基硅烷具有复杂的端基结构 ,封端剂的加入量影响着最终合成聚甲基硅烷的质量 .  相似文献   

4.
反应温度对聚二甲基硅烷高压合成聚碳硅烷性能的影响   总被引:4,自引:0,他引:4  
以聚二甲基硅烷(PDMS)为原料,在高压釜内高温高压合成了聚碳硅烷(PCS)先驱体.研究了反应温度对合成的PCS的Si—H键含量、支化度、Si—Si键含量、分子量及其分布、软化点及产率的影响.研究表明,随着反应温度的提高,分子量及软化点均明显增加,分子量分布变宽,支化度升高,Si—Si键含量明显降低.当反应温度低于460℃时,Si—H键含量及产率随反应温度的升高逐渐升高,当反应温度高于460℃时,由于分子间的缩合及热交联二者逐渐降低.在反应过程中PDMS首先转化为小分子量的PCS,然后是小分子PCS分子间发生脱氢及少量脱甲烷缩合使分子量长大.当反应温度高于450℃时,PCS分子量分布出现中分子量峰,Si—Si键含量较低,在室温空气中比较稳定.  相似文献   

5.
采用适当分子量的低软化点聚碳硅烷(LPCS)和四甲基二乙烯基二硅氮烷(TMDS)为原料,利用硅氢加成反应合成了高软化点聚碳硅烷(HPCS).研究了该反应的过程与特点,探讨了TMDS加入比例对产物特性的影响及其结构变化与可纺性的关系.结果表明,反应初期首先形成含乙烯基侧基的悬挂式结构,并随着硅氢加成反应完成,在LPCS分子间形成Si—N—Si桥联式结构.通过控制TMDS的加入比例,可以调控桥联反应程度从而控制产物的分子量及软化点.控制TMDS/LPCS质量比为0.08,得到了软化点为244~278℃,Mn=2.5×103,分子量呈双峰分布且具有良好可纺性的聚碳硅烷,适用于制备高性能连续Si C纤维.  相似文献   

6.
基于液态聚碳硅烷的聚铝碳硅烷的合成与表征   总被引:1,自引:0,他引:1  
采用液态聚碳硅烷与乙酰丙酮铝在常压下反应合成了具有不同铝含量的聚铝碳硅烷(PACS), 由于不需要循环回流过程, 因此该方法简单方便, 安全性高. 在与合成聚铝碳硅烷相同的条件下, 对单纯的液态聚碳硅烷原料进行保温处理, 所得产物的分析表征结果显示, 该原料在反应条件下基本保持稳定, 不会自聚或者裂解. 不同铝含量的聚铝碳硅烷的元素分析结果表明, 随着乙酰丙酮铝加入量的增加, 聚铝碳硅烷中的铝含量增加, 同时氧含量增加, 氢含量减少, 且乙酰丙酮铝中的铝元素几乎全部引入到液态聚碳硅烷中. GPC分析结果显示, 随着铝含量的增大, PACS的数均分子量增大, 分子量分布变宽. 红外光谱和核磁共振波谱分析结果表明, 液态聚碳硅烷与乙酰丙酮铝的反应主要以消耗Si-H键的方式进行, 铝元素以AlO4, AlO5和AlO6 3种配位形式存在, 同时形成Si-O-Al交联键, 使得聚铝碳硅烷的分子量增大, 分子量分布变宽.  相似文献   

7.
利用聚甲基硅烷(PMS)的高分子反应合成三甲基硅基取代聚硅烷(SPS),研究其分子组成与结构,热分解性能和导电性能等.FT-IR、1H-NMR、29Si-NMR、UV和GPC分析表明,SPS具有Si—Si相连的主链结构,侧链的部分取代基中含有三甲基硅侧基.SPS可溶于一般常见的有机溶剂,其热分解特性表明,陶瓷产率为44%,可用作SiC陶瓷先驱体.通过热交联反应可以有效提高其分子量,将其与碘掺杂,电导率为10-6S/cm量级,在半导体范围.  相似文献   

8.
通过低分子量的聚硅烷与二茂铁反应合成了聚铁碳硅烷(PFCS).探索了反应温度、裂解温度、二茂铁含量等因素对合成PFCS的影响.元素分析、红外光谱、氢谱分析表明,铁被引入到PFCS中,PFCS与聚碳硅烷的结构相似.高温裂解聚铁碳硅烷所得碳化硅陶瓷具有一定的磁性.  相似文献   

9.
聚锆碳硅烷陶瓷先驱体的制备与表征   总被引:1,自引:0,他引:1  
为了提高SiC陶瓷纤维的综合性能,利用聚二甲基硅烷(PDMS)热解制得的液相产物聚硅碳硅烷(PSCS)与乙酰丙酮锆(Zr(AcAc)4)反应,制备了含锆SiC陶瓷纤维的先驱体聚锆碳硅烷(PZCS).选用液相PSCS作为反应原料,可使锆元素在先驱体中分布更加均匀,并能防止Zr(AcAc)4在反应过程中升华.实验合成的PZCS化学式为SiC1.94HxO0.066Zr0.0104,数均分子量Mn=200~400,再成型性良好.反应机理研究表明,反应过程中存在PSCS裂解重排反应,Si—H键在反应中显示出很高的活性,PZCS分子量的增加是PSCS形成的Si—H键与Zr(AcAc)4的配位基发生交联反应的结果.利用PZCS制备的Si—Zr—C—O陶瓷纤维平均强度2.6GPa,平均直径11μm,性能优异.  相似文献   

10.
以聚硅碳硅烷(PSCS)与乙酰丙酮铝(Al(AcAc)3)为原料,在常压高温条件下反应制备出聚铝碳硅烷(PACS),经过熔融纺丝制备了PACS纤维.应用GPC、IR、XPS、29Si-NMR、27Al-NMR、TG、SEM、元素分析和增重等一系列分析,分别对PACS纤维的微观组成、结构以及性能进行了分析.研究结果表明,以原料质量配比为6∶100(Al(AcAc)3∶PSCS)合成的PACS化学式为SiC2.0H7.5O0.13Al0.018,数均分子量为1700左右,最适宜制备PACS纤维;PACS纤维中主要存在SiC4、SiC3H等结构,同时存在Si—O—Al键;在氮气气氛中,PACS纤维的陶瓷产率达到52%左右;预氧化处理,PACS纤维中Si—H键与空气中的氧反应形成Si—O—Si交联结构,较聚碳硅烷(PCS)纤维易于氧化,经过预氧化的PACS纤维陶瓷产率达到80%左右,是制备耐超高温SiC(Al)陶瓷纤维的合适纤维;用预氧化PACS纤维制备的SiC(OAl)纤维和SiC(Al)纤维抗拉强度高,耐高温性能好.  相似文献   

11.
郑春满  李效东  余煜玺  赵大方  曹峰 《化学学报》2006,64(15):1581-1586
采用热重-差热分析、元素分析、扫描电子显微镜、凝胶渗透色谱、红外光谱和核磁共振等手段, 研究了聚铝碳硅烷(PACS)纤维预氧化过程中组成、结构演变的规律和反应机理. 结果表明, 空气中PACS纤维从210 ℃左右开始与氧发生放热反应; 随着预氧化温度的升高, 纤维的氧含量逐渐增加, 凝胶含量在氧增重为6~8 wt%时急剧增加, 纤维表面出现细小的微裂纹. 预氧化初期, 主要是Si—H键与氧的反应, 生成Si—O—Si键, 纤维的数均分子量急剧增加, 形成交联结构; 预氧化中期, Si—H键继续反应, Si—O—Si结构明显增多, 同时Si—CH3和Si—H与氧反应, 生成少量的Si—O—C结构; 预氧化后期, 纤维完全交联, 纤维中存在SiC4, SiC3H, Si—O—Si和少量的Si—O—C结构.  相似文献   

12.
采用聚铝碳硅烷和聚碳硅烷共混制备含铝碳化硅的先驱体,并与直接合成得到的聚铝碳硅烷进行了比较.元素分析表明,共混法能够有效控制聚铝碳硅烷中的铝含量,且共混聚铝碳硅烷先驱体Si—H键含量更高.流变性能研究表明,共混获得的聚铝碳硅烷先驱体黏流活化能从255kJ/mol降至200kJ/mol,先驱体的可纺性提高,所以原纤维的平均直径从19μm降至12μm.预氧化后聚铝碳硅烷原纤维经1800℃一步烧成可得到致密的SiC(Al)纤维;XRD研究表明,纤维中的铝起到抑制碳化硅晶粒长大的作用.  相似文献   

13.
采用正交设计的方法从常压合成得到的中低分子量聚碳硅烷(PCS)出发,进行热压合成制备高分子量的PCS;并运用红外、GPC、核磁共振等分析测试手段对其结构和性能进行了表征.研究表明,采用从常压合成得到的中低分子量PCS出发进行热压合成的化学方法,可以制备得到高分子量的PCS;控制热压反应温度在460-470℃、预加压力1-2 MPa、反应6 h得到先驱体PCS的Mw在6400-8500之间;热压合成后制得的高分子量PCS的支化度有所降低;通过控制热压反应时间可以较好的调控高分子量PCS重均分子量的大小.  相似文献   

14.
新型SiBNC陶瓷先驱体——聚硼硅氮烷的合成与表征   总被引:6,自引:1,他引:5  
唐云  王军  李效东  李文华  王浩  谢征芳 《化学学报》2008,66(11):1371-1376
以甲基氢二氯硅烷、三氯化硼、六甲基二硅氮烷为起始原料, 采用共缩合的方法合成了一种新型的可溶可熔的SiBNC陶瓷先驱体--聚硼硅氮烷(PBSZ). 该法合成工艺简单, 且合成收率约为91% (w%). 采用元素分析、傅立叶红外光谱、核磁共振波谱、X射线光电子能谱、动态热机械分析、热重分析等对PBSZ的组成、结构和性能进行了表征. 结果表明, 先驱体的主要骨架为-Si-N-B-, 其中, B, N以硼氮六环形式存在, 而C则以Si-CH3形式存在. 该先驱体熔点为69 ℃, 数均分子量为10802, 分子量分散系数为1.50. 此外, 所合成的先驱体具有优良的成型性, 在80 ℃的N2气氛中可纺丝得到15~20 μm的有机纤维, 1000 ℃时相应陶瓷产率约为63% (w%).  相似文献   

15.
采用TGA-MS,FTIR和TGA-DTA等分析手段,研究了多元巯基化合物-乙烯基硅氮烷预聚物组成的紫外光固化体系制备的聚合物陶瓷前驱体共聚物在氮气中的热解机理和动力学.结果表明,裂解主要发生在280~430℃,430~560℃和560℃以上3个阶段,明确了各阶段主要发生的化学反应,发现硫元素主要是以H2S和SO2逸出.采用Vachuska-Voboril和Friedman法对不同巯基官能度和不同巯基化合物用量的共聚物热解动力学参数计算表明,增加巯基化合物官能度,第一阶段的热解反应活化能和反应级数相应增大;改变巯基化合物用量使得初始的热解活化能降低,并导致最终陶瓷收率降低.巯基与乙烯基摩尔比分别为2∶1和1∶3的共聚物的热解表观活化能(0.05≤α≤0.65时)分别为175~195 kJ/mol和95~118 kJ/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号