首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
给出不同空化状态下超声波降解苯酚溶液的实验结果,比较了相应的声压级频谱和合成声强。研究了苯酚溶液的浓度、二阶铁盐、超声辐照时间对苯酚降解率的影响,讨论了不同空化状态下的声压级频谱特征。  相似文献   

2.
超声空化状态对苯酚降解的影响   总被引:5,自引:0,他引:5       下载免费PDF全文
给出不同空化状态下超声波降解苯酚溶液的实验结果,比较了相应的声压级频谱和合成声强。研究了苯酚溶液的浓度,二阶铁盐,超声辐射时间对苯酚降解率的影响,讨论了不同空化状态下的声压级频谱特征。  相似文献   

3.
4.
The influence of finite aperture and frequency response of piezoelectric ultrasonic hydrophone probes on the Thermal and Mechanical Indices was investigated using a comprehensive acoustic wave propagation model. The experimental verification of the model was obtained using a commercially available, 8 MHz, dynamically focused linear array and a single element, 5 MHz, focused rectangular source. The pressure-time waveforms were recorded using piezoelectric polymer hydrophone probes of different active element diameters and bandwidths. The nominal diameters of the probes ranged from 50 to 500 microm and their usable bandwidths varied between 55 and 100 MHz. The Pulse Intensity Integral (PII), used to calculate the Thermal Index (TI), was found to increase with increasing bandwidth and decreasing effective aperture of the probes. The Mechanical Index (MI), another safety indicator, was also affected, but to a lesser extent. The corrections needed were predicted using the model and successfully reduced the discrepancy as large as 30% in the determination of PII. The results of this work indicate that by accounting for hydrophones' finite aperture and correcting the value of PII, all intensities derived from the PII can be corrected for spatial averaging error. The results also point out that a caution should be exercised when comparing acoustic output data. In particular, hydrophone's frequency characteristics of the effective diameter and sensitivity are needed to correctly determine the MI, TI, and the total acoustic output power produced by an imaging transducer.  相似文献   

5.
Current literature shows a direct correlation between the sonochemical (SC) process of iodide oxidation and the degradation of phenol solution. This implies phenol degradation occurs primarily via oxidisation at the bubble surface. There is no work at present which considers the effect of fluid flow on the degradation process. In this work, parametric analysis of the degradation of 0.1 mM phenol solution and iodide dosimetry under flow conditions was undertaken to determine the effect of flow. Frequencies of 44, 300 and 1000 kHz and flow rates of 0, 24, 228 and 626 mL/min were applied with variation of power input, air concentration, and surface stabilisation. Phenol degradation was analysed using the 4-aminoantipyrine (4-AAP) method, and sonoluminescence (SL) images were evaluated for 0.1, 20 and 60 mM phenol solutions. Flow, at all frequencies under certain conditions, could augment phenol degradation. At 300 kHz there was excellent correlation between phenol degradation and dosimetry indicating a SC process, here flow acted to increase bubble transience, fragmentation and radical transfer to solution. At 300 kHz, although oxidation is the primary phenol degradation mechanism, it is limited, attributed to degradation intermediates which reduce OH radical availability and bubble collapse intensity. For 44 and 1000 kHz there was poor correlation between the two SC processes. At 44 kHz (0.01 mM), there was little to suggest high levels of intermediate production, therefore it was theorised that under more transient bubble conditions additional pyrolytic degradation occurs inside the bubbles via diffusion/nanodroplet injection mechanisms. At 1000 kHz, phenol degradation was maximised above all other systems attributed to increased numbers of active bubbles combined with the nature of the ultrasonic field. SL quenching, by phenol, was reduced in flow systems for the 20 and 60 mM phenol solutions. Here, where the standing wave field was reinforced, and bubble localisation increased, flow and the intrinsic properties of phenol acted to reduce coalescence/clustering. Further, at these higher concentrations, and in flow conditions, the accumulation of volatile phenol degradation products inside the bubbles are likely reduced leading to an increase SL.  相似文献   

6.
Cavitation, chemical effect, and mechanical effect thresholds were investigated in wide frequency ranges from 22 to 4880 kHz. Each threshold was measured in terms of sound pressure at fundamental frequency. Broadband noise emitted from acoustic cavitation bubbles was detected by a hydrophone to determine the cavitation threshold. Potassium iodide oxidation caused by acoustic cavitation was used to quantify the chemical effect threshold. The ultrasonic erosion of aluminum foil was conducted to estimate the mechanical effect threshold. The cavitation, chemical effect, and mechanical effect thresholds increased with increasing frequency. The chemical effect threshold was close to the cavitation threshold for all frequencies. At low frequency below 98 kHz, the mechanical effect threshold was nearly equal to the cavitation threshold. However, the mechanical effect threshold was greatly higher than the cavitation threshold at high frequency. In addition, the thresholds of the second harmonic and the first ultraharmonic signals were measured to detect bubble occurrence. The threshold of the second harmonic approximated to the cavitation threshold below 1000 kHz. On the other hand, the threshold of the first ultraharmonic was higher than the cavitation threshold below 98 kHz and near to the cavitation threshold at high frequency.  相似文献   

7.
Organic compounds in aqueous solution submitted to an ultrasonic irradiation behave differently according to their physical and chemical properties. In this work, hydrogen peroxide formation and the degradation rate of phenol and carbon tetrachloride have been studied at different frequencies: 20, 200, 500 and 800 kHz. Whatever the frequency, it is easier to decompose CCl4 than phenol by means of ultrasonic wave. It is shown that the rates of reactions involving hydroxyl radicals (hydrogen peroxide formation and phenol degradation) have a maximum value at 200 kHz. The best yield observed at 200 kHz for the phenol degradation may be the result of better HO radicals availability outside of the bubble of cavitation. The degradation rate for carbon tetrachloride which decomposes into the bubble of cavitation increases with frequency. Calculating the reaction rate for one ultrasonic period shows that the efficiency of one ultrasonic cycle decreases as frequency increases.  相似文献   

8.
激光辐照液态工质,在激光能量密度较高时将出现特有的飞溅现象,该过程消耗了大量的工质。选取室温下甘油作为实验研究对象,针对烧蚀甘油发生飞溅过程中产生的力学效应,设计了流场显示和推力测量集成装置,使用YAG激光作为能量源,对甘油进行烧蚀。将得到的流场测量结果与推力曲线比对,找到发生飞溅对应的推力曲线部分,积分计算甘油发生飞溅对烧蚀总冲量贡献的比例。结果表明飞溅所消耗的大量甘油工质使用效率极低,未带来相应的冲量,是液态工质比冲过低的主要原因。因此,在以液体为工质的激光烧蚀推进技术中必须克服飞溅现象。最后给出一种通过碳掺杂来控制液体飞溅的方法,结果表明碳掺杂可以有效减少液体飞溅。  相似文献   

9.
钱梦騄  程茜 《应用声学》2008,27(6):419-426
理论上利用有耗散函数的Lagrange方程,建立了有壳微泡的R(t)运动方程,开展了自由空间中有壳微泡动力学特性的研究,表明微泡内外半径增量随声压的增大、超声频率的降低、初始内径的增大及壳厚的减薄而迅速增大。实验上,利用Mie散射技术在80°散射角和前向Mie散射检测新技术实验测量了微泡R(t)曲线;利用体视显微镜,实时观察了超声微泡对动物活体微血管损伤,开展了超声微泡生物效应的动物和细胞试验研究。结果表明:(1)超声作用下,微泡引起肿瘤中微血管壁周期性膨胀收缩而发生管壁破裂,形成血栓和微血管栓塞,抑制了肿瘤生长;(2)超声联合微泡可以破坏微血管内皮生长因子(VEGF)和肝癌细胞,可以减少肿瘤血管和癌细胞再生,因此,低频超声联合微泡技术是一种值得探索抑制肿瘤生长的新技术。  相似文献   

10.
功率超声治疗的机理及其频率问题   总被引:1,自引:1,他引:1       下载免费PDF全文
酆惠芬  徐宝森 《应用声学》2001,20(3):38-41,37
由于超声治疗的对象,目的不同,所应用的超声生物物理性-治疗机理也不同,不同的物理特性与工作频率有着密切关系,因此,必须正确地选择工作频率,解决好频率自动跟踪中遇到的一系列有关频率问题,才能使超声治疗设备安全,可靠地运行。  相似文献   

11.
超声振动对摩擦力的影响   总被引:7,自引:0,他引:7  
超声振动的应用十分广泛,关于超声振动对摩擦力的影响这个问题,已引起国内外许多学者的注意。本文对其进行了实验和理论研究。在超声振动条件下,以理论计算为基础,通过摩擦实验,得到了几种材料的超声振动摩擦特性,并且对摩擦力在共振时减小的原因进行了初步的理论分析。此外,由实验证明,碳化钨与45#钢组成的摩擦副是用于超声马达的理想材料。  相似文献   

12.
A theoretical prediction of the dependence of the ultrasonic cavitation threshold for sonoluminescence on the acoustic frequency is presented. Data were obtained from the numerical solution of nonlinear oscillations of a single isolated gas-filled bubble in a viscous compressible liquid. Principal reasons for the increase of cavitation threshold with acoustic frequency and liquid viscosity are also briefly discussed.The author wishes to thank professor Ivo Hrazdira for permanent support of this work. All calculations were run on ICL 2950/10 computer of the Regional Computing Centre of the Czechoslovak Academy of Sciences, Brno.  相似文献   

13.
The problem of ultrasound radiation by a finite-size source is considered. A boundary-value problem is formulated and solved for ultrasonic waves generated by an oscillating piezoelectric disk fixed along its edge and characterized by an eigenfrequency spectrum and a corresponding oscillation amplitude distribution. The influence of the size of electrodes on the diffraction effects arising in the ultrasonic field of the piezoelectric disk is theoretically investigated.  相似文献   

14.
曾素琼 《物理实验》2002,22(4):18-21
对超声波换能器频率测试系统进行了探讨,并在此基础上提出了改装设想,分析了所研究的简易超声波换能器频率测试仪的电路原理及实验结果。  相似文献   

15.
Computer simulations of bubble oscillations are performed under conditions of multibubble sonoluminescence (MBSL) in water for various ultrasonic frequencies. The range of the ambient bubble radius for sonoluminescing bubbles narrows as the ultrasonic frequency increases; at 20 kHz it is 0.1-100 microm while at 1 MHz it is 0.1-3 microm. At 1 MHz, any sonoluminescing bubble disintegrates into a mass of smaller bubbles in a few or a few tens of acoustic cycles, while at 20 kHz and 140 kHz some sonoluminescing bubbles are shape stable. The mechanism of the light emission also depends on the ultrasonic frequency. As the ultrasonic frequency increases, the amount of water vapor trapped inside bubbles at the collapse decreases. As a result, MBSL originates mainly in plasma emissions at 1 MHz while it originates in chemiluminescence of OH radicals and plasma emissions at 20 kHz.  相似文献   

16.
The physical or mechanical effects induced by ultrasound were investigated through the viscosity change in degradation of polymers. The viscosity change was observed with polyethylene oxide in both aqueous and benzene solution; while polystyrene in only benzene solution. The frequency of ultrasound in these experiments varies from 20 kHz to 1 MHz, under a constant dissipated power. The viscosity ratio and the apparent degradation rate were obtained as a function of the irradiation frequency. From the analysis of these experiments, the mechanical effects are found to slow down above 100 kHz when the frequency increases. In case of the analysis of solution viscosity, since this method yields the same apparent results in both aqueous and benzene solutions, our study propose an alternative simple, cost effective method to quantify the mechanical effects in sonochemistry.  相似文献   

17.
18.
超声方法对纤维素超分子结构的影响   总被引:14,自引:0,他引:14  
熊犍  叶君  梁文芷 《声学学报》1999,24(1):66-70
探讨了在超声技术处理纤维素过程中,纤维素材料的超分子结构发生的变化。结果显示,经超声波处理过的纤维素(Ⅰ)的分子间氢键、结晶度、晶粒尺寸及晶粒形态都有一定的变化.FTIR分析说明,经超声处理后,其分子间氢键减弱、结晶度提高.X-射线衍射分析证实,超声处理产物仍保持纤维素材料原有的晶型和两相(晶区与非晶区)共存的微细结构.  相似文献   

19.
In recent years, The ecological environment of rivers and lakes have been seriously polluted, and the eutrophication of water bodies has become increasingly prominent, which not only seriously affects the living environment of surrounding residents, but also poses a major threat to the ecological security of water environment. The growth of algae is characterized by short cycle, rapid reproduction and great harmfulness. Conventional algal removal technology is expensive, easy to produce secondary pollution, and difficult to effectively inhibit algae outbreaks, therefore, a new environmental protection technology, ultrasonic algae removal technology, has been put forward. Under the background of ecological environment pollution, in this paper, the effect of ultrasonic technology on degradation of Microcystins (MCs) under different conditions and is investigated. Results show that Microcystins removal rate reaches 81% when Microcystin solution with a concentration of 12.43 mu/L is treated by ultrasound (1200 W) for 5 min; the removal rate of Microcystin reaches 99% after 15 min of ultrasound treatment (1200 W), and almost all of them are removed; no matter wastewater containing Microcystis is treated by ultrasound alone or ultrasound-coagulation method, the levels of Microcystins in the water do not increase. The results also prove that ultrasound can directly destroy the wall and kill algae, inhibit the growth activity of un-killed algae and degrade Microcystins. In addition, the technical principle and application prospect of ultrasonic algae removal instrument in ecological environment are introduced. The paper provided certain direction and theoretical support for the subsequent improvement of ultrasonic algae removal technology.  相似文献   

20.
Effect of additives on ultrasonic degradation of phenol   总被引:6,自引:0,他引:6  
Sonication for phenol degradation has proved to be an attractive process over the years at least on a laboratory scale but the rates of phenol degradation under sonication have always been quite low. The present work investigates the use of simple additives such as salt and carbon tetrachloride as process intensifying parameters with an aim of reduction in the treatment times and hence the cost of operation. The intermediates formed in the degradation process have been analyzed and it has been observed that these intermediates degrade faster as compared to phenol. A hybrid technique of ozonation coupled with cavitation has also been investigated with an objective of finding the optimum conditions for the combination of ozonation and cavitation for synergistic effects. Analysis of the intermediates for the combination treatment scheme also indicates that the intermediates (hydroquinone, catechol, resorcinol, maleic acid, acetic acid, oxalic acid, formic acid, etc.) are more biodegradable prompting a possible combination of cavitation with aerobic oxidation for large scale treatment of phenol containing waste.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号