首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Tetrahedron: Asymmetry》2006,17(10):1561-1567
Kinetic resolutions of (±)-3-chloro-3-arylpropanols by lipase mediated acetylation are described for the first time. Acetylation with CCL provided the best enantioselectivity amongst the enzymes used. Enantiomerically enriched products were obtained with up to 78% ee after two successive lipase-catalyzed acetylations. Different substituents on the aromatic ring and bromide, instead of chloride, on the substrates were found to have no drastic influence on the enantioselectivity of the reaction.  相似文献   

2.
在水—有机溶剂和水—离子液两相体系中研究了脂肪酶催化的萘普生甲酯的立体选择性水解反应。考察了转化率,对映体过量值(eep);(ees)与时间的关系。据此构建了一种可以进行萘普生甲酯立体选择性水解的水—离子液两相体系,在该水—离子液两相体系中酶的活性与传统的水—有机相两相体系相比没有明显的变化,但是酶的立体选择性却明显提高,同时也对水—离子液两相体系中水含量对萘普生甲酯立体选择性水解反应的影响进行了研究,发现在水:离子液(v/v)为1:1时酶的活性和立体选择性最好。  相似文献   

3.
Several types of imidazolium salt ionic liquids were prepared derived from poly(oxyethylene)alkyl sulfate and used as an additive or coating material for lipase-catalyzed transesterification in an organic solvent. A remarkably increased enantioselectivity was obtained when the salt was added at 3-10 mol % versus substrate in the Burkholderia cepacia lipase (lipase PS-C)-catalyzed transesterification of 1-phenylethanol by using vinyl acetate in diisopropyl ether or a hexane solvent system. In particular, a remarkable acceleration was accomplished by the ionic liquid coating with lipase PS in an iPr(2)O solvent system while maintaining excellent enantioselectivity; it reached approximately 500- to 1000-fold acceleration for some substrates with excellent enantioselectivity. A similar acceleration was also observed for IL 1-coated Candida rugosa lipase. MALDI-TOF mass spectrometry experiments of the ionic-liquid-coated lipase PS suggest that ionic liquid binds with lipase protein.  相似文献   

4.
The enantioselectivity exhibited by Candida antarctica lipase B (CALB) in predominantly organic media has been studied for different enzyme protonation states. Alcoholysis of (+/-)-2-phenyl-4-benzyloxazol-5(4H)-one (1) using butan-1-ol as the nucleophile in low-water organic solvents was used as a model reaction. Using either organo-soluble bases or the newly introduced solid-state buffers of known pK(a), the protonation state of the lipase was altered. By choice of the appropriate solid-state buffer or organic base, the enantioselectivity could be selectively tuned. Both Et(3)N and the solid-state buffer pair CAPSO/CAPSO.Na were found to increase the enantioselectivity of the reaction catalyzed by CALB and that of another lipase (Mucor miehei). Significant differences to both the enantioselectivity and catalytic rate were observed, especially under hydrated conditions where byproduct acid was formed.  相似文献   

5.
《Tetrahedron: Asymmetry》2001,12(2):177-179
By rational purification of lipase OF on a mercurial affinity column three fractions were identified as responsible for the improved enantioselectivity without compromising the total activity of the crude enzyme. These three portions of lipase OF have remarkably different abilities to differentiate between the enantiomers of α-arylpropionic acids in the lipase catalyzed hydrolysis of the corresponding esters.  相似文献   

6.
Candida rugosa lipase was immobilized with a sol–gel encapsulation procedure in the presence and absence of a calix[n]arene carboxylic acid derivative grafted onto magnetic nanoparticles or in the presence of the calix[n]arene carboxylic acid derivative with Fe3O4 magnetic nanoparticles as an additive. Through the enantioselective hydrolysis of racemic naproxen methyl ester and the hydrolysis of p-nitrophenylpalmitate, the relative enzyme activity was evaluated and tested. These results show that the encapsulated lipase without supports has lower conversion and enantioselectivity compared to the Calix[n]COOH-based encapsulated lipase. It has also been observed that the Calix[4]COOH-based encapsulated lipase has excellent enantioselectivity (enantiomeric ratio (E)?>?400) as compared to encapsulated-free lipase enantioselectivity (E?=?137), and it also has an enantiomeric excess value of ~98 % for S-naproxen.  相似文献   

7.
Synthetic chemists often exploit the high enantioselectivity of lipases to prepare pure enantiomers of primary alcohols, but the molecular basis for this enantioselectivity is unknown. The crystal structures of two phosphonate transition-state analogs bound to Burkholderia cepacia lipase reveal this molecular basis for a typical primary alcohol: 2-methyl-3-phenyl-1-propanol. The enantiomeric alcohol moieties adopt surprisingly similar orientations, with only subtle differences that make it difficult to predict how to alter enantioselectivity. These structures, along with a survey of previous structures of enzyme bound enantiomers, reveal that binding of enantiomers does not involve an exchange of two substituent positions as most researchers assumed. Instead, the enantiomers adopt mirror-image packing, where three of the four substituents at the stereocenter lie in similar positions. The fourth substituent, hydrogen, points in opposite directions.  相似文献   

8.
《Tetrahedron: Asymmetry》2005,16(22):3698-3702
The addition of sodium dodecyl sulfate (SDS) resulted in a dramatic improvement of the enantioselectivity of the lipase-catalyzed hydrolysis of racemic butyl 2-(4-substituted phenoxy)propanoates, racemic butyl 2-(4-isobutylphenyl)propanoate, and racemic butyl 2-(6-methoxy-2-naphthyl)propanoate in an aqueous buffer solution. An increase in the E value by up to two orders of magnitude was observed for some esters. As to the effects of SDS on the structure of a lipase, FT-IR and fluorescence measurements suggest some conformational change and/or an increase of the flexibility of the lipase, although the native secondary structure of the lipase is held even in the presence of 100 mM SDS. The origin of the enantioselectivity enhancement brought about by the addition of SDS is briefly discussed on the basis of the values of the initial rates obtained for each enantiomer of the substrate.  相似文献   

9.
Candida rugosa lipase was encapsulated within a chemically inert sol–gel support prepared by polycondensation with tetraethoxysilane and octyltriethoxysilane in the presence of β-cyclodextrin-based polymer. The catalytic activity of the encapsulated lipases was evaluated both in the hydrolysis of p-nitrophenylpalmitate and the enantioselective hydrolysis of racemic Naproxen methyl ester. It has been observed that the percent activity yield of the encapsulated lipase was 65 U/g, which is 7.5 times higher than that of the covalently immobilized lipase. The β-cyclodextrin-based encapsulated lipases had higher conversion and enantioselectivity compared with covalently immobilized lipase. The study confirms an excellent enantioselectivity (E >300) for the encapsulated lipase with an enantiomeric excess value of 98% for S-naproxen.  相似文献   

10.
Colyophilization of lipase was carried out with immobilized β‐cyclodextrins (β‐CyD) bearing methyl, acetyl, benzoyl, and nicotinoyl substituents. The colyophilizates enhanced stereoselectivity in the acylation of several alcohols. The enantioselectivity in the acylation of ethyl‐1‐hydroxymethyl‐phenylphosphine oxide using colyophilized lipase with nicotinoyl‐β‐CyD increased approximately threefold (from E=34 to E=113). The amphiphilic character of modified CyDs has been found to influence the enhancement of enantioselectivity.  相似文献   

11.
A simple method for rapid estimation of the enantioselectivity of lipase in resolution of chiral esters is described. The enantioselectivity of lipase can be estimated rapidly through comparing the dif-ference of hydrolysis rates for the racemic ester and its slow reacting enantiomer under the same condition because the difference mainly depends on the enantioselective ratio(E values). The higher the enantiose-lectivity of enzyme, the larger the difference of hydrolysis rate. The bromothymol blue(BTB) can be used as pH indicator for microplate reader to monitor the formation of acid in lipase-catalyzed hydrolysis ofesters. This method has been successfully used to rapidly estimate the enantioselectivity of several lipases in the resolution of glycidyl butyrate.  相似文献   

12.
Directed evolution of an enantioselective lipase   总被引:9,自引:0,他引:9  
BACKGROUND: The biocatalytic production of enantiopure compounds is of steadily increasing importance to the chemical and biotechnological industry. In most cases, however, it is impossible to identify an enzyme that possesses the desired enantioselectivity. Therefore, there is a strong need to create by molecular biological methods novel enzymes which display high enantioselectivity. RESULTS: A bacterial lipase from Pseudomonas aeruginosa (PAL) was evolved to catalyze with high enantioselectivity the hydrolysis of the chiral model substrate 2-methyldecanoic acid p-nitrophenyl ester. Successive rounds of random mutagenesis by ep-PCR and saturation mutagenesis resulted in an increase in enantioselectivity from E=1.1 for the wild-type enzyme to E=25.8 for the best variant which carried five amino acid substitutions. The recently solved three-dimensional structure of PAL allowed us to analyze the structural consequences of these substitutions. CONCLUSIONS: A highly enantioselective lipase was created by increasing the flexibility of distinct loops of the enzyme. Our results demonstrate that enantioselective enzymes can be created by directed evolution, thereby opening up a large area of novel applications in biotechnology.  相似文献   

13.
Obesity is a complex health issue and it can cause many health and social problems. Previous studies reported that lipase is a main target for obesity treatment. We synthesized Rexo‐2‐norbornyl‐Nn‐butylcarbamate and Sexo‐2‐norbornyl‐Nn‐butylcarbamate as potential pseudomonas lipase inhibitors to probe the enantioselectivity of the enzyme and demonstrated that Rexo‐2‐norbornyl‐Nn‐butylcarbamate had better enzyme enantioselectivity, ki and the docking model with Pseudomonas species lipase in our previous studies. In this article, we reported the property of the Pseudomonas species lipase inhibitors, R‐and Sendo‐2‐norbornyl‐Nn‐butylcarbamate and compared the docking models of these two compounds with R‐ and Sexo‐2‐norbornyl‐Nn‐butylcarbamates by AutoDock. We found that Sendo‐2‐norbornyl‐Nn‐butylcarbamate has the best enantioselectivity, ki and docking model and this study could provide useful information about enzyme enantioselectivity for the development of Pseudomonas species lipase inhibitors for obesity treatment.  相似文献   

14.
Lee D  Choi YK  Kim MJ 《Organic letters》2000,2(16):2553-2555
The substrate matching strategy is described as a new approach for effectively enhancing the lipase enantioselectivity in organic solvent. In the lipase-catalyzed transesterifications of 3a-c, higher enantioselectivities have been achieved using 1a-c, respectively, as the structurally matched acyl donors.  相似文献   

15.
The hydrolysis of triethyl citrate in the presence of three serine proteases (chymotrypsin, subtilisin BPN′, subtilisin carlsberg) is highly regioselective and gives the symmetric diester. Several lipases and proteases have the complementary regioselectivity and give the chiral diester. Pig liver esterase, Aspergillus niger lipase and Candida antarctica lipase give the chiral (R)-diester with good regio- and enantioselectivity. The stereoselective hydrolysis of the meso citric derivatives 7a,b in the presence of Candida antarctica lipase gives the corresponding (R)-monoester.  相似文献   

16.
Phosphocarnitine was conveniently obtained from easily available diethyl 3-chloro-2-oxopropanephosphonates, followed by subsequent reduction, Mucor miehei lipase (IM) mediated resolution, amination and dealkylation. Candida antarctica lipase B (CALB) served as an effective biocatalyst in the resolution of several 1- or 2-hydroxyalkanephosphonates. The chlorine atom in different positions on the molecules greatly affected their enantioselectivity. CALB also showed satisfactory enantioselectivity toward those molecules bearing an azido moiety. Both enantiomers of phosphogabob and fosfomycin were also prepared via CALB-mediated resolution as the key step.  相似文献   

17.
Water Activity Dependence of Lipases in Non-aqueous Biocatalysis   总被引:1,自引:0,他引:1  
Eleven lipases are tested and it was found that lipases can be divided into three types according to water activity dependence. The first type is lipase that has low water activity dependence and works in a low water activity, its performance changes little with the change of water activity. The optimum water activity is 0.19 and Newlase F (Rhizopus niveus), lipase FAP-15 (Rhizopus oryzae) belong to this type. The second type is lipase that has medium water activity dependence and its performance changes with the change of water activity. Most lipases belong to this type and the optimum water activity in this type is about 0.60. The third type is lipase that has a high water activity dependence and works only in a high water activity (a w  > 0.75). WGL (wheat germ) belongs to this type and the optimum water activity is 0.90. The relationship between enantioselectivity and water activity is also discussed and the enantioselectivity seems to be independent of water activity. And we also compared the two control methods of water activity, it was found that the method which add solid salt hydrates to the reaction mixture (method II) is more stable and effective throughout the reaction than the method that pre-equilibrate via the vapor phase (method I). The addition concentration of salt hydrates is also investigated and the optimum concentration is 1 g/l.  相似文献   

18.
Lipase from Rhizomucor miehei was entrap-immobilized on cellulose acetate-TiO2 gel fiber by the sol-gel method. This fiber-immobilized lipase was stable in a phosphate buffer solution and easy to handle. The enantioselective hydrolysis of 1,2-diacetoxypropane catalyzed by this immobilized lipase could be performed in buffer solution unlike the lipase immobilized on an alginate matrices. The enantioselectivity was improved in presence of this fiber-immobilized lipase compared with the hydrolysis catalyzed by the native lipase. This finding indicates that the active site structure of lipase immobilized on fiber was retained to some extent, though the enzyme conformation may become flexible in presence of water. We also compared the properties of this fiber-immobilized lipase with native lipase and commercially available immobilized lipase from Rhizomucor miehei, viz., Lipozyme.  相似文献   

19.
《Tetrahedron: Asymmetry》2003,14(13):1807-1817
In the transesterification reaction between (RS)-2-bromophenyl acetic acid ethyl ester and 1-octanol in n-octane, Pseudomonas cepacia lipase enantioselectivity towards the (R)-isomer is 57. Two strategies are described to investigate the structural basis involved in this enzyme enantioselectivity. Molecular modelling of the tetrahedral intermediate mimicking the transition state enables the identification of two potentially productive substrate-binding modes for each enantiomer. However, the conformations obtained with the faster and slower-reacting enantiomers have equivalent potential energies and most of them possess the hydrogen bonds essential for catalysis. On this basis, it is not possible to distinguish the diastereomeric complexes. The second approach is original and consists in a simple but robust protocol of pseudomolecular dynamics simulations under constraints to map the probable trajectory of the enantiomers in the active site. Enzyme/substrate interaction energy is always found to be lower for the faster-reacting enantiomer, which satisfactorily corroborates the experimental results. Energy differences are attributed to specific interactions of these substrates with a network of hydrophobic residues lining the access path. Furthermore, mechanistic details suggest that the pivoting side chains of the hydrophobic residues act in a concerted step–tooth gear motion whose basic role is to select and guide the substrates towards the active site. With this type of lipase, such dynamic features could be the key explanation of this as yet unexplored enantiorecognition. For the slower-reacting enantiomer, it appears that the concerted motion of the side chains is perturbed when the substrate passes through a bottleneck formed by Val266 and Leu17. The enantioselectivity of mutant Val266Leu with a more bulky side chain at this position supports our assumption: by narrowing the bottleneck, the enantioselectivity was considerably enhanced as much as up to 200.  相似文献   

20.
The effects of two eco-friendly solvents, 2-methyltetrahydrofuran (MeTHF) and cyclopentyl methyl ether (CPME), on the enzyme activity and enantioselectivity of Novozym 435, Candida rugosa lipase (CRL), Porcine pancreas lipase (PPL), Lipase AK, Lipase PS, and Lipozyme, a series of commercial lipases, in the enantioselective transesterfications of racemic menthol, racemic sulcatol and racemic α-cyclogeraniol were studied. Vinyl acetate was chosen as the acyl donor and the reactions were carried out at water activity 0.06. The activity of lipases in CPME was similar to that observed in other largely employed organic solvents [toluene and tert-butyl methyl ether (MTBE)], and was slightly lower in MeTHF. However, for most of the lipases tested, the enantioselectivity was higher in the eco-friendly solvents. Lipase AK exhibited a high enantioselectivity (E = 232) for the resolution of racemic menthol but the reaction rate was low. Lipase formulation (the enzyme was frozen and lyophilized in potassium phosphate buffer without and with 5% (w/v) of sucrose, d-mannitol, or methoxy poly(ethylene glycol)) was tested with this lipase in order to improve its activity, which increased up to 4.5 times, compared to the untreated enzyme. CALB was found to be a useful biocatalyst for the resolution of racemic sulcatol, where high activity and enantioselectivity were obtained (E  1000). For the resolution of the racemic primary alcohol α-cyclogeraniol, most of the lipases tested were active but not enantioselective, except lipase PS which displayed a moderate enantioselectivity (E = 19). The effect of the presence of a low percentage of two ionic liquids (ILs) 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][TFSI]) (5% (v/v)) and 1-Butyl-3-methylimidazoliumtetrafluoroborate ([BMIM][BF4]) (1% (v/v)) in the medium was also investigated. Only in the case of CRL the ILs slightly increased the enantioselectivity from E = 91 to E = 103 and E = 120 for [BMIM][TFSI] and [BMIM][BF4], respectively. However, in all cases ILs caused a decrease of enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号