首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding contants, adsorption free energies, absolute adsorbate number densities, and interfacial charge densities of Al(III), Sc(III), Y(III), La(III), and Gd(III) interacting with fused silica/water interfaces held at pH 4 were determined using second harmonic generation and the Eisenthal χ((3)) technique. By examining the relationship between the measured adsorption free energies and the electric double layer interfacial potential at multiple electrolyte concentrations, we elucidate the charge state and possible binding pathways for each ion at the fused silica surface. Al(III) and Sc(III) ions are found to bind to the fused silica surface as fully hydrated trivalent species in a bidentate geometry. In contrast, the Y(III), La(III), and Gd(III) ions are each shown to adsorb to the silica surface in a decreased charge state, but the extent and mode of binding varies with each ion. By quantifying the exponential sensitivity of the surface coverage of the adsorbed ions to their charge state directly at the fused silica/water interface, we provide benchmarks for theory calculations describing the interactions of metal ions with oxide interfaces in geochemistry and hope to improve the prediction of trivalent metal ion transport through groundwater environments.  相似文献   

2.
Adsorbed polyethylenimine (PEI) of M w 1,800 and 70,000 on silica (SiO2) dispersions produced flocculated slurry in the pH range of 5 to 12. Adsorbed citrate widens this flocculated pH regime. It also increases the strength of the interparticle attractive force or the yield stress over the pH range of between 3 and 8. The stronger attractive force is due to particle bridging by the citrate anions bonding with positively charge sites of the adsorbed PEI layer of the interacting particles at the closest point of interaction. The higher M w PEI being more strongly attached to the silica particle produced a stronger attractive interparticle force with adsorbed citrate anions. Via charge balance calculation using contributions from SiO2, PEI, and citrate, the pH of zero charge was found to correspond to the pH of zero zeta potential for PEI of M w 70,000. This suggests 100% adsorption of PEI and citrate on SiO2. The bridging interaction was confirmed by a linear relationship between yield stress and the square of the limiting citrate charge content. Adsorbed citrate was found for the first time to play the role of a bridging agent, a result of the positive charges being located on a more flexible adsorbed layer rather than being fixed to a rigid surface.  相似文献   

3.
The influence of hydrolyzable metal ions (Mn(II) and Ca(II)) adsorption on the surface chemistry, particle interactions, flocculation, and dewatering behavior of kaolinite dispersions has been investigated at pH 7.5 and 10.5. Metal ion adsorption was strongly cation type- and pH-dependent and significantly influenced the zeta potential, anionic polyacrylamide-acrylate flocculant (PAM) adsorption, shear yield stress, settling rate, and consolidation of kaolinite slurries. The presence of Mn(II) and Ca(II) ions alone led to a systematic reduction in zeta potential due to specific adsorption of positively charged metal ion-based hydrolysis products at the kaolinite-water interface. Metal ion-mediated zeta potential changes were reflected by lower dispersion shear yield stresses and improved clarification (higher settling rates) but had no detectable effect on dispersion consolidation. The adsorption of PAM was significantly improved by prior addition of the metal ions. In the presence of Mn(II) or Ca(II) ions, the flocculant adsorption density was enhanced at pH 7.5 for Mn(II) and pH 10.5 for Ca(II). Optimum flocculation conditions, involving partial rather than complete particle surface coverage by both metal ions and flocculant, were identified. As a consequence, the metal ions and flocculant acted synergistically to enhance dewatering, producing particle interactions that were more conducive to high settling rates and greater consolidation of kaolinite dispersions at pH 7.5 than 10.5.  相似文献   

4.
Adsorbed polystyrene sulphonate (PSS) shifts the pH of the zero zeta potential, pHς = 0, of ZrO2 to a lower pH. The positive charge density of ZrO2 at pH = pHς=0 determined from the amount of PSS adsorbed was in excellent agreement with that obtained from charge titration. Polystyrene sulphonic acid shifts pHς=0 to a greater degree compared with polyacrylic acid because it is a much stronger acid. A patch is likely to just consist of one adsorbed molecule. The patch is negative when the charges of the molecule exceed the underlying positive surface charge. Attraction between the negative patch and the bare positive surface of a second particle is responsible for increasing the yield stress of concentrated ZrO2 dispersions at pHς=0. Its magnitude is only of the order of the van der Waals attraction. Increasing ionic strength and patch misalignment diminish the attraction. The upper limit of the patch area was estimated from the radius of gyration of the molecule in solution. With a known patch area, the patch charged density can be calculated. With the selection of an appropriate patch area, the yield stress due to charged patch attraction increases linearly with the product of the negative and positive patch densities. Received: 30 March 1998 Accepted: 18 September 1998  相似文献   

5.
Reactions of Al(III) at the interface between SiO2(s) and aqueous solution were characteristically and quantitatively studied using electrophoretic methods and applying a surface complexation/precipitation model (SCM/SPM). The surface and bulk properties of Al(III)/SiO2 suspensions were determined as functions of pH and initial Al(III) concentration. Simulated modeling results indicate that the SCM, accounting for the adsorption mechanism, predicts sorption data for low surface coverage only reasonably well. Al(III) hydrolysis and surface hydroxide precipitation must be invoked as the Al(III) concentration and/or pH progressively increase. Accordingly, the three processes in the Al(III) sorption continuum, from adsorption through hydrolysis to surface precipitation, could be identified by the divergence between the SCM/SPM predictions and the experimental data. SiO2(s) suspensions with low Al(III) concentrations (1 x 10(-4) and 1 x 10(-5) M) exhibit electrophoretic behavior similar to that of a pure SiO2(s) system. In Al(III)/SiO2 systems with high Al concentrations of 1 x 10(-3), 5 x 10(-3) and 1 x 10(-2) M, three charge reversals (CR) are observed, separately representing, in order of increasing pH, the point of zero charge (PZC) on the SiO2 substrate (CR1), the onset of the surface precipitation of Al hydroxide (CR2), and at a high pH, the PZC of the Al(OH)3 coating (CR3). Furthermore, in the 1 x 10(-3) M Al(III)/SiO2(s) system, CR2 is consistent with the modeling results of SCM/SPM and provides evidence that Al(III) forms a surface precipitate on SiO2(s) at pH above 4. SiO2(s) dissolution was slightly inhibited when Al(III) was adsorbed onto the surface of SiO2(s), as compared to the dissolution that occurs in a pure SiO2(s) suspension system. Al hydroxide surface precipitation dramatically reduced the dissolution of SiO2(s) because the Al hydroxide passive film inhibited the corrosion of the SiO2(s) surface by OH- ions.  相似文献   

6.
X-ray structural and spectroscopic properties of a series of heterodinuclear d(8)-d(10) metal complexes [M'M' '(mu-dcpm)(2)(CN)(2)](+) containing d(8) Pt(II), Pd(II), or Ni(II) and d(10) Au(I), Ag(I), or Cu(I) ions with a dcpm bridging ligand have been studied (dcpm = bis(dicyclohexylphosphino)methane; M' = Pt, M' ' = Au 4, Ag 5, Cu, 6; M' ' = Au, M' = Pd 7, Ni 8). X-ray crystal analyses showed that the metal...metal distances in these heteronuclear metal complexes are shorter than the sum of van der Waals radii of the M' and M' ' atoms. The UV-vis absorption spectra of 4-6 display red-shifted intense absorption bands from the absorption spectra of the mononuclear trans-[Pt(phosphine)(2)(CN)(2)] and [M' '(phosphine)(2)](+) counterparts, attributable to metal-metal interactions. The resonance Raman spectra confirmed assignments of (1)[nd(sigma)-->(n + 1)p(sigma)] electronic transitions to the absorption bands at 317 and 331 nm in 4 and 6, respectively. The results of theoretical calculations at the MP2 level reveal an attractive interaction energy curve for the skewed [trans-Pt(PH(3))(2)(CN)(2)-Au(PH(3))(2)(+)] dimer. The interaction energy of Pt(II)-Au(I) was calculated to be ca. 0.45 ev.  相似文献   

7.
黎耀忠  黄裕林 《分子催化》1999,13(3):212-214
在以水溶性铑-膦配合物为催化剂的烯烃氢甲酰化反应中,铑的存在形态及配位结构对烯烃氢甲酰化反应的转化率及选择性起着决定性的作用.在反应过程中,特别是工业生产过程中,会由于各种原因导致一些杂质进入反应体系,这些杂质可能会影响铑-膦配合物催化剂的性质,改变...  相似文献   

8.
Mechanism of adsorption of Zn(II) and Cd(II) ions at the TiO2 (anatase)/electrolyte interface has been studied by different experimental techniques (potentiometric titration, microelectrophoresis and adsorption measurements of zinc and cadmium species). It was found that the point of zero charge (pzc) of anatase (pH =5.8) was shifted to the lower pH values with increasing concentrations of Zn(II) or Cd(Il) ions. The surface charge of anatase in the presence of Zn(II) and Cd(II) for pH > pHpzc was higher than that observed for original sample in NaClO4 solutions only. Due to low coverage of anatase surface with Zn(II) or Cd(II) species almost no shift of the isoelectric point (iep) or charge reversal were observed. Adsorption density vs. pH plots for both Zn(Il) or Cd(II) showed, typical for multivalent ions, presence of “adsorption edge.”  相似文献   

9.
二氧化硅悬浮体和水解聚丙烯酰胺体系的流变性   总被引:6,自引:0,他引:6  
研究了二氧化硅悬浮体的流变性。在固体含量较少的情况下, 体系呈Newton型;固体含量达到一定程度以后, 产生三维结构, 为假塑性体系。三维结构的固体含量与pH值有关。实验证实, 在等电点(i,e, p)附近三维结构最为疏松。还研究了水解聚丙烯酰胺(HPAM)对悬浮体流变性能的影响。HPAM破坏了二氧化硅粒子聚集体结构, 呈絮凝体结构, 并出现触变性。当高聚物在固体表面覆盖一半时, 具有最大触变性和动剪切力。HPAM的水解度达到一定程度, 由于对固体粒子由“强”吸附转变为“弱”吸附, 固体粒子“屏蔽”了高分子间的相互作用, 出现了负触变性现象。在流动时粒子会脱附, 静止以后又产生吸附, 这种吸附与脱附是产生负触变性的主要原因。HPAM水解过度或用量过多, 均会减弱负触变性现象。  相似文献   

10.
The dinuclear Cu2+ and Zn2+ as well as the mixed Cu2+-Zn2+ complexes of a 5,5'-pentaazaterpyridinophane ligand (L) are able to incorporate imidazolate (Im-) as a bridging ligand. The crystal structure of [Cu(2)L(Im)(Br)(H2O)](CF(3)SO(3))(2).3H2O (1) shows one copper coordinated by the three pyridine nitrogens of the terpyridine unit, one nitrogen of the imidazolate bridge (Im-) and one bromide anion occupying the axial position of a distorted square pyramid. The second copper atom is coordinated by the remaining imidazolate nitrogen, the three secondary nitrogens at the centre of the polyamine bridge and one water molecule that occupies the axial position. Magnetic measurements have been performed in the 2.0-300.0 K temperature range. Experimental data could be satisfactorily reproduced by using an isotropic exchange model H = -JS(1)S(2) with J = -52.3 cm(-1) and g = 2.09. Potentiometric studies have provided details of the speciation and stability constants for the mixed Cu2+-L-HIm, Zn2+-L-HIm (HIm = imidazole) and Cu2+-Zn2+-L-HIm systems. The apparent stability constant obtained at pH = 9 for the addition of imidazole to the dinuclear Cu2+ complexes is one of the highest so far reported (log K = 7.5). UV-Vis spectroscopy and paramagnetic NMR data show that imidazole coordinates to the Cu2+ ions as a bridging imidazolate ligand from pH 5 to 10. Electrochemical reduction of the Cu2+-Zn2+-L complex occurs in two successive one-electron per copper ion quasi-reversible steps. The formal potential of the Cu2+-Zn2+-L/Cu+-Zn2+-L couple is close to that of SOD. The IC50 values measured at pH 7.8 by means of the nitro blue tetrazolium method show significant SOD activity for the dinuclear Cu2+ complexes (IC50 = 2.5 microM) and moderate activity for the Cu2+-Zn2+ mixed systems (IC50 = 30 microM).  相似文献   

11.
The analytical potential of poly(ethylene glycol) p-isooctyl-phenyl ether (Triton X-100), a nonionic surfactant, is used as a mobile phase in the thin-layer chromatographic separation of heavy-metal cations. The surfactant concentration below its critical micellar concentration (CMC) as well as above the CMC value is used to investigate the migrational behavior of some heavy-metal ions on silica gel layers. The mobility of the metal ions is found to change marginally with the increase of surfactant concentration from 0.001M (below CMC) to 0.1M (above CMC). The influence of the pH of the medium, nonelectrolyte organic (urea and alkanols), and inorganic electrolyte (NaCI) additives in the surfactant containing mobile phase on the mobility of heavy metals on the silica gel layer is examined. For separating metal ions, surfactant must be used in the presence of buffers. Triton X-100 (0.02M) at pH 2.3 is found to be the best mobile phase for the separation of heavy-metal cations. In general, the presence of alcohol in aqueous surfactant solutions results in a decrease in the mobility of metal ions. Besides Cu2+ and Fe3+, all of the metal ions show a trend of increasing the retardation factor beyond a minima at 0.1 or 0.3M of added urea or NaCl. The proposed method is successfully applied for the simultaneous detection of Zn2+ and Cd2+ from a spiked human blood sample.  相似文献   

12.
 The stabilization and flocculation behavior of colloidal silica-particles with cationic polyelectrolytes (PE) is investigated. The zetapotentials, diffusion coefficients and flocculation rate constants of silica particles have been measured as a function of the adsorbed amount of cationic polyelectrolytes poly(diallyl-dimethyl-ammoniumchloride) (PDADMAC) of different molar masses and of statistic copolymers of DADMAC and N-methyl-N-vinyl-acetamide (NMVA) of various compositions at different salt concentrations and pH-values. Very fast flocculation due to van der Waals attraction occurs if the zetapotential is small. At low ionic strength this condition occurs just below the plateau of the adsorption isotherms where the surface charges are screened by adsorbed polycations. Additionally with high molecular polycations slow mosaic flocculation is observed at lower PE concentrations. At high ionic strength fast flocculation takes place at low macroion concentration due to the screening of the surface charges by adsorbed polycations and salt ions. At medium concentrations of polycations below plateau adorption slow bridging flocculation is observed. At plateau adsorption the suspensions become stabilized up to high ionic strength. At low salt concentration charge reversal at full coverage with polycations results in electrostatic repulsion. At high ionic strength the particles are stabilized sterically due to the osmotic repulsion of the long adsorbed PE tails. Therefore macroions of high molar mass are necessary to stabilize the suspension at high ionic strength. Received: 27 January 1998 Accepted: 23 March 1988  相似文献   

13.
The redox electrochemistry of hydroquinone and Cu2+-, Ni2+-, and Fe3+-hydroquinone complexes immobilized at the SAM interface has been studied in aqueous solutions with pH 5 to 12 using cyclic voltammetry. Self-assembled monolayers were constructed with terminal hydroquinone residues designed to model marine adhesive proteins that use the DOPA (3,4-dihydroxyphenylalanine) moiety. Coordination of metal to the hydroquinone group results in a shift to the ligand oxidation potential, with the value for Delta E p,a dependent on the solution pH and identity of the metal. Cu2+ shifts the hydroquinone oxidation by -285 mV (pH 8.8), and Ni2+ by -194 mV (pH 9.16). The hydroquinone oxidation was shifted by -440 mV at pH 5 for Fe3+ solutions examined up to pH 7. By contrast, reduction of the quinone is unperturbed by the presence of Cu2+, Ni2+, and Fe3+ ions. Implications of these results to the mechanism of marine adhesion are discussed.  相似文献   

14.
The effects of o-phenanthroline and 2,2′-bipyridine on the adsorption of metal(II) (Fe, Co, Ni and Cu) ions onto silica gel surface have been studied. The adsorption is expressed in terms of the measured concentrations of both metal and ligand at equilibrium. Each adsorption of the four metal ions is increased with the presence of the ligands. In addition, adsorption increases slowly with pH at low pH values and then increases rapidly up to near the pKa value of silica gel (≈6.5). The adsorption of each metal ion at low pH is increased with increased ligand concentration. However, at high pH the adsorptions of Fe(II) and Cu(II) are decreased with increased ligand concentration whereas the adsorptions of Co(II) and Ni(II) are always increased. At low pH values the ligand to metal ratio adsorbed on the silica gel surface is ca. 3:1 while at high pH values it is 1:1, 2:1, and 3:1, corresponding to the initial ligand to metal ion concentration ratio. The addition of ethanol to the phenanthroline-SiO2 solution results in a decrease in the adsorption of phenanthroline. The effect of ethanol is also observed in the Fe(II)-phenanthroline-SiO2 system. The behavior of the adsorption is interpreted qualitatively by hydrophobic expulsion, the formation of surface complexes, and electrostatic interaction. It is concluded that hydrophobic expulsion plays an important role in the adsorption of metal ions in the presence of hydrophobic ligands on silica gel surface.  相似文献   

15.
The surface electrochemical properties of alumina based ceramic microfiltration membranes were studied by measuring electroosmotic rates and surface charge densities obtained from potentiometric titrations. The rate of electroosmosis, which determines the zeta-potential, was measured on the membrane itself, whereas the surface charge was titrated on a suspension obtained by crushing of the membrane. The zeta-potential was measured in the presence of salts including NaCl, CaCl2 and Na2SO4, for a wide range of pH values (4–9) at ionic strengths of 0.01 and 0.001 M. The pH value of the isoelectric point (iep) show a specific adsorption of SO42− and Ca2+ ions onto the membrane surface. The iep in NaCl solutions occurs at pH 4.7 ± 0.1. The low iep is due to the large amount of silicium oxide in the membrane. The surface charge density is relatively high with respect to the low values of zeta-potentials. The point of zero charge pH(pzc) determined from surface charge and pH profiles occurs at pH 8.2 ± 0.1 in NaCl solution. The pH(pzc) value was also determined by two ‘addition’ methods. Similar pH(pzc) values were obtained. The difference between the pH(pzc) and pH(iep) may be correlated to a loss of acidity that is due to using crushed-membrane powder to perform potentiometric measurements.  相似文献   

16.
The efficiency of Zn(2+), Cu(2+), Ni(2+), Co(2+), Fe(2+) or Mn(2+) labeling of the conformational and charge states of lysozyme was studied in H(2)O solvent at pH 2.5-6.8. Labeling of lysozyme was conducted with 50 M, 100 M and 500 M excess of the metal ion, resulting in the number of metal ions attached to lysozyme increasing two-fold over this range. At pH 6.2-6.8, Zn(2+), Cu(2+), Ni(2+), Co(2+) and Mn(2+) labeled the highly folded 7+ conformer and the 8+ and 9+ partially unfolded conformers of lysozyme with the same number of metal ion tags, with only Fe(2+) exhibiting no labeling. Lysozyme conserved its charge after metal ion labeling which shows at each charge state the divalent metal ion is replacing two protons. As the pH is lowered to 4.7-5.0 and 2.5-2.9, the labeling of lysozyme by Zn(2+), Cu(2+), Ni(2+), Co(2+) or Mn(2+) decreased in efficiency due to increased competition from protons for the aspartate and glutamate binding sites. The metal ions preferentially labeled the highly folded 7+ and partially unfolded 8+ conformers, but labeling decreased as the charge of lysozyme increased. In contrast to the other metal ions, Fe(2+) exhibited labeling of lysozyme only at the lowest pH of 2.8. At higher pH, the oxidation of Fe(2+) and formation of hydroxy-bridged complexes probably make the Fe(2+) unreactive towards lysozyme.  相似文献   

17.
Controlled-pore silica glass modified with N-propylsalicylaldimine (SCPSG) has been investigated as a surface-active matrix for the separation of some metal ions. The porous silica glass base was confirmed to have better stability towards hydrolysis in aqueous solution buffered at pH=9 in comparison to silica gel, which showed twice the surface area of controlled-pore silica glass. The different analytical parameters affecting the batch mode separation and preconcentration of trace Al(II), Ag(I) and Hg(II) in environmental samples using SCPSG, prior to their determination using inductively coupled plasma mass spectrometry (ICP-MS), were studied. The optimum conditions are pH 9.0 +/- 0.1, time of stirring 30 min and the eluent concentration 0.5 mol dm(-3) HNO3. The ion-exchange capacity of SCPSG with respect to Al(III), Ag(I) and Hg(II) was 0.27, 0.18 and 0.23 mmol g(-1), respectively. The recovery values for the metal ions were 96.8 +/- 0.86, 98.1 +/- 0.60 and 96.2 +/- 1.06%, and the analytical detection limits were 26.1, 1.49 and 0.44 pg cm(-3), respectively, for a preconcentration factor of 100. The method has been applied to the determination of the investigated metal ions in natural water samples as well as certified and reported samples and the results were found to be accurate.  相似文献   

18.
尖晶石型纳米复合金属氧化物目前主要的合成方法还是共沉淀法 [1,2 ] .但是此种方法常因不能准确掌握共沉淀的 p H范围 ,而出现组分金属离子偏析 ,难制得不含杂相的纯净复合金属氧化物纳米微粒[3] .混合金属离子能否形成复合氢氧化物 ,在什么条件下形成 ,这方面的研究还未见报道 .电位滴定法通常是研究单一金属离子的水解或氢氧化物生成的有效方法 [4 ,5] ,为此 ,我们以 Al3+、Fe3+分别与 Ni2 +、Zn2 +、Cu2 +等金属离子形成的二元金属混和溶液为对象 ,使用自动电位滴定仪测定这些混合体系的电位滴定曲线 ,并通过与相应的单一金属离子的…  相似文献   

19.
On-column complexation of metal ions with 2,6-pyridinedicarboxylate (2,6-PDC) to form anionic complexes enabled their separation by capillary zone electrophoresis with direct UV detection at 214 nm. Nine metal ions, Cu2+, Zn2+, Ni2+, Cd2+ Mn2+, Pb2+, Fe3+, Al3+ and Ca2+, were determined in less than 7 min using 10 mM 2.6-PDC solution containing 0.75 mM tetradecyltrimethylammonium bromide at pH 4.0. Satisfactory working ranges (20-300 microM), detection limits (3-10 microM) and good repeatability of the peak areas (RSD 2.1-4.2%, n=5) were obtained using hydrodynamic injection (30 s). The proposed method was used successfully for the determination of Mn2+, Fe3+, Al3+ and Ca2+ in groundwaters.  相似文献   

20.
朱苗力  卢丽萍  杨频 《化学学报》2004,62(8):783-788
二甲双胍盐酸盐、硝酸盐及与Zn2+, Cu2+, Ni2+三种金属离子配合物的结构特点、电荷分布和二甲双胍配合物对四氧嘧啶糖尿病小鼠血糖影响的研究表明:Zn2+配合物表现为较为少见的单齿配位,而Cu2+, Ni2+配合物表现为双齿配位.进一步电荷分布计算发现,与端基N原子相比,二甲双胍的桥基N原子具有较高的负电荷.三种金属离子配合物对四氧嘧啶糖尿病小鼠血糖的影响研究显示,桥基N配位掩蔽后,二甲双胍的降血糖功能丧失.说明桥基N对二甲双胍的降血糖作用具有重要意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号