首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Distortion product otoacoustic emissions (DPOAEs) were measured using sinusoidal amplitude modulation (AM) tones. When one of the primary stimuli (f(1) or f(2), f(1)?< f(2)) was amplitude modulated, a series of changes in the cubic difference tone (CDT) were observed. In the frequency domain, multiple sidebands were present around the CDT and their sizes grew with the modulation depth of the AM stimulus. In the time domain, the CDT showed different modulation patterns between two major signal conditions: the AM tone was used as the f(1) or the f(2). The CDT amplitude followed the AM tone when the f(1) was amplitude modulated. However, when the AM tone acted as the f(2), the CDT showed a more complex modulation pattern with a notch present at the AM tone peak. The relatively linear dependence of CDT on f(1) and the nonlinear relation with f(2) can be explained with a variable gain-control model representing hair cell functions at the DPOAE generation site. It is likely that processing of AM signals at a particular cochlear location depends on whether the hair cells are tuned to the frequency of the carrier. Nonlinear modulation is related to on-frequency carriers and off-frequency carriers are processed relatively linearly.  相似文献   

2.
Steady state responses to the sinusoidal modulation of the amplitude or frequency of a tone were recorded from the human scalp. For both amplitude modulation (AM) and frequency modulation (FM), the responses were most consistent at modulation frequencies between 30 and 50 Hz. However, reliable responses could also be recorded at lower frequencies, particularly at 2-5 Hz for AM and at 3-7 Hz for FM. With increasing modulation depth at 40 Hz, both the AM and FM response increased in amplitude, but the AM response tended to saturate at large modulation depths. Neither response showed any significant change in phase with changes in modulation depth. Both responses increased in amplitude and decreased in phase delay with increasing intensity of the carrier tone, the FM response showing some saturation of amplitude at high intensities. Both responses could be recorded at modulation depths close to the subjective threshold for detecting the modulation and at intensities close to the subjective threshold for hearing the stimulus. The responses were variable but did not consistently adapt over periods of 10 min. The 40-Hz AM and FM responses appear to originate in the same generator, this generator being activated by separate auditory systems that detect changes in either amplitude or frequency.  相似文献   

3.
Across-critical-band processing of amplitude-modulated tones   总被引:2,自引:0,他引:2  
Two experiments using two-tone sinusoidally amplitude-modulated stimuli were conducted to assess cross-channel effects in processing low-frequency amplitude modulation. In experiment I, listeners were asked to discriminate between two sets of two-tone amplitude-modulated complexes. In one set, the modulation phase of the lower frequency carrier tone was different from that of the upper frequency carrier tone. In the other stimulus set, both amplitude-modulated carriers had the same modulator phase. The amount of phase shift required to discriminate between the two stimulus sets was determined as a function of the separation between the two carriers, modulation depth, and modulation frequency. Listeners could discriminate a 50 degrees-60 degrees phase shift between the modulated envelopes for tones separated by more than a critical band. In experiment II, the modulation depth required to detect modulation of a probe carrier was measured in the presence of an amplitude-modulated masker. The threshold for detecting probe modulation was determined as a function of the separation between the masker and probe carriers, the phase difference between the masker and probe modulators, and masker modulation depth (in all conditions, the rate of probe and masker modulation was 10 Hz). The threshold for detecting probe modulation was raised substantially when the masker tone was also modulated. The results are consistent with theories suggesting that amplitude modulation helps form auditory objects from complex sound fields.  相似文献   

4.
This work extends the study of adaptation to amplitude modulation (AM) to the perception of highly detectable modulation. A fixed-level matching procedure was used to find perceptually equivalent modulation depths for 16-Hz modulation imposed on a 1-kHz standard and a 4-kHz comparison. The modulation depths in the two stimuli were compared before and after a 10-min exposure to a 1-kHz tone (adaptor) 100% modulated in amplitude at different rates. For modulation depths of 63% (20 log m = -4) and smaller, the perceived modulation depth was reduced after exposure to the adaptor that was modulated at the same rate as the standard. The size of this reduction expressed as a difference between the post- and pre-exposure AM depths was similar to the increase in AM-detection threshold observed after adaptation. Postexposure suprathreshold modulation depth was not appreciably reduced when the modulation depth of the standard was large (approached 100%). A much smaller or no reduction in the perceived modulation depth was also observed when the modulation rates of the adaptor and the standard tone were different. The tuning of the observed effect of the adaptor appears to be much sharper than the tuning shown by modulation-masking results.  相似文献   

5.
Two experiments were conducted to assess the effect of the rate of sinusoidal amplitude modulation (SAM) of a masker tone on detection of SAM of a probe tone (experiment 1) or on SAM-rate discrimination for the probe tone (experiment 2). When modulated at the same rate as the probe, the masker interfered with both the detection of probe modulation and the discrimination of the rate of probe modulation. The interference was obtained when the masker was either higher or lower in frequency than the probe (the probe and masker were separated by 2 oct). The amount of interference in detecting probe modulation (experiment 1) decreased as the common base rate of modulation was increased from 5 to 200 Hz. For rate discrimination (experiment 2), the amount of interference remained approximately the same for base rates of 2-40 Hz, the range over which rate discrimination was measured. In both experiments, the amount of interference was reduced when the masker was modulated at a different rate than the probe.  相似文献   

6.
Exposure to an FM tone elevates FM threshold but not AM threshold. This holds for a wide range of frequency deviations (delta F = +/- 0.4 Hz- +/- 30 Hz at least) provided that modulation frequency is low (fm = 2 Hz), but if fm is somewhat higher (e.g., 8 Hz) the finding only holds for small frequency deviations. FM threshold can rise with time up to an adapting duration of at least 1200 s, through this buildup depends on frequency deviation. Exposure to an AM tone elevates AM threshold, but not FM threshold, over a wide range of modulation depths (at least m = 5%--50%). Quasi-FM (QFM) adapting tones resemble FM adapting tones in their effects upon FM and AM sensitivities, even though QFM and AM adapting tones have identical power spectra. Exposure to a pure tone produces no difference between FM and AM threshold elevations. These data can be explained if the human auditory pathway contains separate information-processing channels for AM and FM signals whose sensitivities do not overlap even with suprathreshold stimuli. We suppose that the FM channel (but not the AM channel) is sensitive to changing differences (or ratios) between signals from different sites along the basilar membrane.  相似文献   

7.
Observation of the otoacoustic emissions (OAEs) evoked during a continuous single stimulus tone have been made on humans using a nonlinear residual time domain technique. The technique, described in this paper, involved the digital summation of responses to contiguous stimulation intervals, some of which included short bursts of a suppressor, or probe, tone. Stimulus intervals are constructed so that both the stimulus and probe tones summed to zero cyclically, leaving a residual response. This residual is attributable to the nonlinearity of the whole acoustic response, as measured in the ear canal, to the stimulus and probe tone complex. A theoretical treatment of this paradigm is presented examining the relation of this residual to the OAE evoked by the stimulus tone. It is shown experimentally that the residual, found at the stimulus tone frequency, has a latency and saturating input-output growth functions indicative of an OAE. The detailed OAE amplitude-versus-frequency variations, and the general latencies of the OAEs in two human ears were measured using both the constant tone evoked residual method described and the click evoked delayed emission method. The results from both methods are in agreement. The frequency-dependent properties of the suppression of the OAE were investigated using various stimuli to probe frequency ratios. The continuous tone time domain residual method has advantages for the observation of stimulus frequency OAEs and for relating these to any distortion product simultaneously generated.  相似文献   

8.
The perceived strength of intensity fluctuations evoked by suprathreshold sinusoidal amplitude modulation (AM) and the perceived size of intensity increments were compared across levels of a wideband noise and a 1-kHz tone. For the 1-kHz tone, the comparisons were made in quiet and in a high-pass noise. The data indicate that suprathreshold modulation depths and intensity increments, perceived as equivalent across levels, follow a pattern resembling Weber's law for noise and the "near miss" to Weber's law for a tone. The effect of a high-pass noise was largely consistent with that observed for AM and increment detection. The data suggest that Weber's law is not a direct consequence of the dependence of internal noise on stimulus level, as suggested by multiplicative internal noise models. Equal loudness ratios and equal loudness differences (computed using loudness for the stationary portions before and after the increment) accounted for the increment-matching data for noise and for the tone, respectively, but neither measure predicted the results for both types of stimuli. Predictions based on log-transformed excitation patterns and predictions using an equal number of intensity just-noticeable differences were in qualitative, but not quantitative, agreement with the data.  相似文献   

9.
The ratios between the modulation index (eta) for just noticeable FM of a sinusoidally modulated pure tone and the degree of modulation (m) for just noticeable AM at the same carrier and the same modulation frequency were measured at carrier frequencies of 0.125, 0.25, 0.5, 1, 2, 4, and 8 kHz. Signal levels were 20 dB SL and 50 dB SPL or 80 dB SPL. At low modulation frequencies, for example, 8 Hz, AM and FM elicit very different auditory sensations (i.e., a fluctuation in loudness or pitch, respectively). In this case, eta and m show different values for just noticeable modulation. Since both stimuli have almost equal amplitude spectra if eta equals m (m less than 0.3), the difference in detection thresholds reflects differences in the phase relation between carrier and sidebands in AM and FM. With increasing modulation frequency, the eta-m ratio decreases and reaches unity at a modulation frequency called the "critical modulation frequency" (CMF). At modulation frequencies above the CMF, the same modulation thresholds are obtained for AM and FM. Therefore, it can be concluded that the difference in phase between the two types of stimuli is not perceived in this range. At center frequencies below 1 kHz, where phase errors caused by headphones and ear canal presumably are small, the CMF is useful in estimating critical bandwidth.  相似文献   

10.
The present study shows that on average, exposure to a 15 min, 5 kHz tone modulated sinusoidally in amplitude at 16 Hz with a 100% depth does not affect significantly amplitude modulation (AM) detection thresholds measured between 4 and 64 Hz when listeners are extensively trained to the AM detection task, with and without adaptor before data collection. These results are compatible with previous work given that a clear 6-dB adaptation effect was observed during the first pilot trials. However, the results reveal that adaptation effects are not robust, and suggest that the mechanisms underlying adaptation to AM must be reevaluated.  相似文献   

11.
This article is concerned with the detection of mixed modulation (MM), i.e., simultaneously occurring amplitude modulation (AM) and frequency modulation (FM). In experiment 1, an adaptive two-alternative forced-choice task was used to determine thresholds for detecting AM alone. Then, thresholds for detecting FM were determined for stimuli which had a fixed amount of AM in the signal interval only. The amount of AM was always less than the threshold for detecting AM alone. The FM thresholds depended significantly on the magnitude of the coexisting AM. For low modulation rates (4, 16, and 64 Hz), the FM thresholds did not depend significantly on the relative phase of modulation for the FM and AM. For a high modulation rate (256 Hz) strong effects of modulator phase were observed. These phase effects are as predicted by the model proposed by Hartmann and Hnath [Acustica 50, 297-312 (1982)], which assumes that detection of modulation at modulation frequencies higher than the critical modulation frequency is based on detection of the lower sideband in the modulated signal's spectrum. In the second experiment, psychometric functions were measured for the detection of AM alone and FM alone, using modulation rates of 4 and 16 Hz. Results showed that, for each type of modulation, d' is approximately a linear function of the square of the modulation index. Application of this finding to the results of experiment 1 suggested that, at low modulation rates, FM and AM are not detected by completely independent mechanisms. In the third experiment, psychometric functions were again measured for the detection of AM alone and FM alone, using a 10-Hz modulation rate. Detectability was then measured for combined AM and FM, with modulation depths selected so that each type of modulation would be equally detectable if presented alone. Significant effects of relative modulator phase were found when detectability was relatively high. These effects were not correctly predicted by either a single-band excitation-pattern model or a multiple-band excitation-pattern model. However, the detectability of the combined AM and FM was better than would be predicted if the two types of modulation were coded completely independently.  相似文献   

12.
We report on a chromatic dispersion monitoring technique using a direct detection of high-speed chirped pilot tones. Unlike the previously proposed monitoring technique using amplitude-modulated (AM) and phase-modulated (PM) pilot tones, the proposed technique can discriminate the sign of accumulated dispersion. The results show that the performance of this technique could not be seriously deteriorated by polarization-mode dispersion (PMD) and self-phase modulation (SPM) since the tone frequency was small (∼2 GHz).  相似文献   

13.
Neuronal responses were recorded to pure and to sinusoidally amplitude-modulated (AM) tones at the characteristic frequency (CF) in the central nucleus of the inferior colliculus of anesthetized guinea pigs. Temporal (synchronized) and mean-rate measures were derived from period histograms locked to the stimulus modulation waveform to characterize the modulation response. For stimuli presented in quiet, the modulation gain at low frequencies of modulation (approx less than 50 Hz) was inversely proportional to the neuron's mean firing rate in response to both the modulated stimulus and to a pure tone at an equivalent level. In 43% of units the mean discharge rates in response to the AM stimuli were greatest for those modulation frequencies that generated the largest temporal responses. These discharge-rate maxima occurred at signal intensities corresponding to the steeply sloping part of the neuron's pure-tone rate-intensity function (RIF). The change in mean-rate response to modulated stimuli, as a function of intensity, was qualitatively similar to the pure-tone RIF. Adding broadband noise to the modulated stimulus increased the neuron's temporal response to low modulation frequencies. This increase in modulation gain was correlated with mean firing rate in response to the modulation but did not bear a simple relationship to the noise-induced shift in the RIF measured for a pure tone.  相似文献   

14.
When the source of a tone moves with respect to a listener's ears, dichotic (or interaural) phase and amplitude modulations (PM and AM) are produced. Two experiments investigated the psychophysical characteristics of dichotic linear ramp modulations in phase and amplitude, and compared them with the psychophysics of diotic PM and AM. In experiment 1, subjects were substantially more sensitive to dichotic PM than diotic PM, but AM sensitivity was equivalent in the dichotic and diotic conditions. Thresholds for discriminating modulation direction were smaller than detection thresholds for dichotic AM, and both diotic AM and PM. Dichotic PM discrimination thresholds were similar to detection thresholds. In experiment 2, the effects of ramp duration were examined. Sensitivity to dichotic AM and PM, and diotic AM increased as duration was increased from 20 ms to 200 ms. The functions relating sensitivity to ramp duration differed across the stimuli; sensitivity to dichotic PM increased more rapidly than sensitivity to dichotic or diotic AM. This was also reflected in shorter time-constants and minimum integration times for dichotic PM detection. These findings support the hypothesis that the analysis of dichotic PM and AM rely on separate mechanisms.  相似文献   

15.
The paper explores the possibilities to extend the direct modulation bandwidth in dual-longitudinal-mode distributed feedback lasers by exploiting the photon–photon resonance induced by the interaction of the two modes in the laser cavity. The effects on the direct amplitude modulation and on the direct modulation of the difference frequency between the two modes are analyzed using simulation and experimental results. When the photon–photon resonance, which occurs at the difference frequency between the two modes, is properly placed at a higher frequency than the carrier-photon resonance, the small-signal amplitude modulation (AM) bandwidth of the laser can be significantly increased. However, both simulations and experiments point out that a high small-signal AM bandwidth does not lead to a high large-signal AM bandwidth if the small-signal modulation response has significant variations across the modulation bandwidth. The paper shows that a high large-signal AM bandwidth is obtained when the two modes are significantly unbalanced, whereas a high-bandwidth difference frequency modulation can be best detected when the two modes are balanced and the DC bias is properly chosen.  相似文献   

16.
Three experiments were designed to provide psychophysical evidence for the existence of envelope information in the temporal fine structure (TFS) of stimuli that were originally amplitude modulated (AM). The original stimuli typically consisted of the sum of a sinusoidally AM tone and two unmodulated tones so that the envelope and TFS could be determined a priori. Experiment 1 showed that normal-hearing listeners not only perceive AM when presented with the Hilbert fine structure alone but AM detection thresholds are lower than those observed when presenting the original stimuli. Based on our analysis, envelope recovery resulted from the failure of the decomposition process to remove the spectral components related to the original envelope from the TFS and the introduction of spectral components related to the original envelope, suggesting that frequency- to amplitude-modulation conversion is not necessary to recover envelope information from TFS. Experiment 2 suggested that these spectral components interact in such a way that envelope fluctuations are minimized in the broadband TFS. Experiment 3 demonstrated that the modulation depth at the original carrier frequency is only slightly reduced compared to the depth of the original modulator. It also indicated that envelope recovery is not specific to the Hilbert decomposition.  相似文献   

17.
Steady-state evoked potential responses were measured to binaural amplitude-modulated (AM) and combined amplitude- and frequency-modulated (AM/FM) tones. For awake subjects, AM/FM tones produced larger amplitude responses than did AM tones. Awake and sleeping responses to 30-dB HL AM/FM tones were compared. Response amplitudes were lower during sleep and the extent to which they differed from awake amplitudes was dependent on both carrier and modulation frequencies. Background EEG noise at the stimulus modulation frequency was also reduced during sleep and varied with modulation frequency. A detection efficiency function was used to indicate the modulation frequencies likely to be most suitable for electrical estimation of behavioral threshold. In awake subjects, for all carrier frequencies tested, detection efficiency was highest at a modulation frequency of 45 Hz. In sleeping subjects, the modulation frequency regions of highest efficiency varied with carrier frequency. For carrier frequencies of 250 Hz, 500 Hz, and 1 kHz, the highest efficiencies were found in two modulation frequency regions centered on 45 and 90 Hz. For 2 and 4 kHz, the highest efficiencies were at modulation frequencies above 70 Hz. Sleep stage affected both response amplitude and background EEG noise in a manner that depended on modulation frequency. The results of this study suggest that, for sleeping subjects, modulation frequencies above 70 Hz may be best when using steady-state potentials for hearing threshold estimation.  相似文献   

18.
A new method is developed to construct a cochlear transducer function using modulation of the summating potential (SP), a dc component of the electrical response of the cochlea to a sinusoid. It is mathematically shown that the magnitude of the SP is determined by the even-order terms of the power series representing a nonlinear function. The relationship between the SP magnitudes and the second derivative of the transducer function was determined by using a low-frequency bias tone to position a high-frequency probe tone at different places along the cochlear transducer function. Two probe tones (6 kHz and 12 kHz) ranging from 70 to 90 dB SPL and a 25-Hz bias tone at 130 dB SPL were simultaneously presented. Electric responses from the cochlea were recorded by an electrode placed at the round window to obtain the SP magnitudes. The experimental results from eight animals demonstrated that the SP magnitudes as a function of bias levels are essentially proportional to the second derivative of a sigmoidal Boltzmann function. This suggests that the low-frequency modulated SP amplitude can be used to construct a cochlear transducer function.  相似文献   

19.
Detectability of a tonal signal added to a tonal masker increases with increasing duration ("temporal integration"), up to some maximum duration. Initially assumed to be some form of energy integration over time, this phenomenon is now often described as the result of a statistical "multiple looks" process. For continuous maskers, listeners may also use a mechanism sensitive to changes in stimulus intensity, possibly a result of inherent sensitivity to amplitude modulation (AM). In order to examine this hypothesis, change detection was investigated in the presence of AM maskers presented at either the same carrier frequency as the target signal or at a distant frequency. The results are compatible with the hypothesis that listeners detect intensity increments by using change-detection mechanisms (modeled here as the outputs of a bank of modulation filters) sensitive to envelope modulation at both low (4-16 Hz) and high (around 100 Hz) rates. AM masking occurred even when the masker was at a carrier frequency more than two octaves above that of the signal to be detected. This finding is also compatible with the hypothesis that similar mechanisms underlie sensitivity to AM (where across-frequency masking is commonly shown) and detection of intensity increments.  相似文献   

20.
Two experiments are presented that measure the acuity of binaural processing of modulated interaural level differences (ILDs) using psychoacoustic methods. In both experiments, dynamic ILDs were created by imposing an interaurally antiphasic sinusoidal amplitude modulation (AM) signal on high-frequency carriers, which were presented over headphones. In the first experiment, the sensitivity to dynamic ILDs was measured as a function of the modulation frequency using puretone, and interaurally correlated and uncorrelated narrow-band noise carriers. The intrinsic interaural level fluctuations of the uncorrelated noise carriers raised the ILD modulation detection thresholds with respect to the pure-tone carriers. The diotic fluctuations of the correlated noise carriers also caused a small increase in the thresholds over the pure-tone carriers, particularly with low ILD modulation frequencies. The second experiment investigated the modulation frequency selectivity in dynamic ILD processing by imposing an interaurally uncorrelated bandpass noise AM masker in series with the interaurally antiphasic AM signal on a pure-tone carrier. By varying the masker center frequencies relative to the signal modulation frequency, broadly tuned, bandpass-shaped patterns were obtained. Simulations with an existing binaural model show that a low-pass filter to limit the binaural temporal resolution is not sufficient to predict the results of the experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号