首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 612 毫秒
1.
Equations that describe dispersion of a substance in a nononedimensional incompressible liquid flow through a plane channel are derived. The model under consideration extends the traditional Taylor model to the case where sources of the substance are present in the flow and relaxation transfer processes are taken into account. Additional conditions for the dispersion equations are obtained. The relation between the proposed model and the Taylor model is analyzed. Based on the equations obtained, the mass transfer between circulation regions in the flow is calculated and a system of cellularmodel equations for stagnant cavities is constructed.  相似文献   

2.
Wang  Fuli  Bear  Jacob  Shaviv  Avi 《Transport in Porous Media》1998,33(3):309-324
Nitrogen dynamics in the soil under the condition of environmentally friendly fertilization practices (EFFPs) is described by a comprehensive Ndynamics model. The model (first paper of this series, Transport in Porous Media 31(3) (1998), 249–274) is different from other models in its capability of simulating the special phenomena related to the application of EFFPs. In this paper, a finite difference method is used to solve the mathematical model. The numerical model is verified by simulating several water flow and conservative solute transport problems with existing numerical or analytic solutions. The good agreements between our simulation results and the solutions given by others show that our model is reliable in simulating flow and transport problems in the soil. Preliminary model validation is conducted by applying the model to simulate two field experiments. The acceptable agreements between our numerical simulation results and experimental data demonstrate that the model can reasonably model Ndynamics in the soil under field conditions.  相似文献   

3.
A complete mathematical model is developed for the motion of a current loop powered from a constant voltage source and placed in the field of a permanent magnet rotating with a constant angular velocity. Local analysis of this model shows that it is unstable in the absence of external load, which contradicts the practice of motor operation. Therefore, the motor rotor model considered is incorrect although it is frequently used. The detected contradiction is eliminated by introducing an additional loop, which is orthogonal to the initial one and has the same parameters but is shortcircuited. The complete mathematical model of such a system is unstable in the absence of external load. For the case of an induction motor, the conditions of dichotomy, global asymptotic stability, and instability are formulated.  相似文献   

4.
A mathematical model based on a crystal size distribution function is proposed for the continuous dissolution of particles having the shape of a parallelepiped. An evolution equation for the undersaturation of the solution is derived. Results of calculations using this equation are presented. A stability analysis of the steadystate solution obtained is carried out.  相似文献   

5.
A mathematical model for the mechanism of increasing oil output of productive seams is developed. The model involves a deliberate conversion of segments of the fault zone of the country rock to a supercritical state, which leads to a local redistribution of stresses in the block massif of rocks and an increase in contour and seam pressures. Based on solving the problem of restricted filtration, it is shown that the use of the proposed mechanism can ensure a relative increase in well production of 5–8%.  相似文献   

6.
In cationic surfactant solutions a change of state occurs due to mechanical stresses. In the dilute regime of rodlike micelles the formation of a so-called Shear-Induced State (SIS) occurs above a critical shear rate. In this context dilute means that there is no sterical interaction between rodlike micelles, the solution is below the overlap concentration. Employing a mathematical model, it is shown that aggregation forces are weak compared to hydrodynamic forces. The mathematical formulation is based on a model of Israelachvili which describes the chemical potential of micelles. Hydrodynamic forces are calculated with a rigid-dumbbell model. SIS formation can be explained by the destruction of rodlike micelles.  相似文献   

7.
A mathematical model of mechanics of a twovelocity twotemperature mixture of gases is developed. Based on this model, evolution of the mixing layer of two gases with different densities under the action of shock and compression waves is considered by methods of mathematical simulation in the onedimensional unsteady approximation. In the asymptotic approximation of the full model, a solution of an initialboundary problem is obtained, which describes the formation of a diffusion layer between two gases. Problems of interaction of shock and compression waves with the diffusion layer are solved numerically in the full formulation. It is shown that the layer is compressed as the shock wave traverses it; the magnitude of compression depends on shockwave intensity. As the shock wave passes from the heavy gas to the light gas, the mixing layer becomes overcompressed and expands after shockwave transition. The wave pattern of the flow is described in detail. The calculated evolution of the mixinglayer width is in good agreement with experimental data.  相似文献   

8.
9.
A number of contributions have been made during the last decades to model pure-diffusive transport problems by using the so-called hyperbolic diffusion equations. These equations are used for both mass and heat transport. The hyperbolic diffusion equations are obtained by substituting the classic constitutive equation (Fick’s and Fourier’s law, respectively), by a more general differential equation, due to Cattaneo (C R Acad Sci Ser I Math 247:431–433, 1958). In some applications the use of a parabolic model for diffusive processes is assumed to be accurate enough in spite of predicting an infinite speed of propagation (Cattaneo, C R Acad Sci Ser I Math 247:431–433, 1958). However, the use of a wave-like equation that predicts a finite velocity of propagation is necessary in many other calculations. The studies of heat or mass transport with finite velocity of propagation have been traditionally limited to pure-diffusive situations. However, the authors have recently proposed a generalization of Cattaneo’s law that can also be used in convective-diffusive problems (Gómez, Technical Report (in Spanish), University of A Coruña, 2003; Gómez et al., in An alternative formulation for the advective-diffusive transport problem. 7th Congress on computational methods in engineering. Lisbon, Portugal, 2004a; Gómez et al., in On the intrinsic instability of the advection–diffusion equation. Proc. of the 4th European congress on computational methods in applied sciences and engineering (CDROM). Jyväskylä, Finland, 2004b) (see also Christov and Jordan, Phys Rev Lett 94:4301–4304, 2005). This constitutive equation has been applied to engineering problems in the context of mass transport within an incompressible fluid (Gómez et al., Comput Methods Appl Mech Eng, doi: 10.1016/j.cma.2006.09.016, 2006). In this paper we extend the model to compressible flow problems. A discontinuous Galerkin method is also proposed to numerically solve the equations. Finally, we present some examples to test out the performance of the numerical and the mathematical model.  相似文献   

10.
A new mathematical model for the macroscopic behavior of a material composed of a poroelastic solid embedding a Newtonian fluid network phase (also referred to as vascularized poroelastic material), with fluid transport between them, is derived via asymptotic homogenization. The typical distance between the vessels/channels (microscale) is much smaller than the average size of a whole domain (macroscale). The homogeneous and isotropic Biot’s equation (in the quasi-static case and in absence of volume forces) for the poroelastic phase and the Stokes’ problem for the fluid network are coupled through a fluid-structure interaction problem which accounts for fluid transport between the two phases; the latter is driven by the pressure difference between the two compartments. The averaging process results in a new system of partial differential equations that formally reads as a double poroelastic, globally mass conserving, model, together with a new constitutive relationship for the whole material which encodes the role of both pore and fluid network pressures. The mathematical model describes the mutual interplay among fluid filling the pores, flow in the network, transport between compartments, and linear elastic deformation of the (potentially compressible) elastic matrix comprising the poroelastic phase. Assuming periodicity at the microscale level, the model is computationally feasible, as it holds on the macroscale only (where the microstructure is smoothed out), and encodes geometrical information on the microvessels in its coefficients, which are to be computed solving classical periodic cell problems. Recently developed double porosity models are recovered when deformations of the elastic matrix are neglected. The new model is relevant to a wide range of applications, such as fluid in porous, fractured rocks, blood transport in vascularized, deformable tumors, and interactions across different hierarchical levels of porosity in the bone.  相似文献   

11.
Within the framework of the Buckley–Leverett scheme, a solution is obtained for the problem of organization of an influx to a gallery of wells whose nearwell zone is contaminated for some reasons by the water phase. A method of engineering estimates is developed for the moment of penetration of the front of water displacing oil into the plugged zone of production wells with simultaneous determination of oil recovery in the reservoir. The results obtained may be used in constructing a mathematical model of optimized development of oil fields.  相似文献   

12.
The main objective of this paper is to review and report on key mathematical issues related to the theory of Large Eddy Simulation of turbulent flows. We review several LES models for which we attempt to provide mathematical justifications. For instance, some filtering techniques and nonlinear viscosity models are found to be regularization techniques that transform the possibly ill-posed Navier-Stokes equation into a well-posed set of PDEs. Spectral eddy-viscosity methods are also considered. We show that these methods are not spectrally accurate, and, being quasi-linear, that they fail to be regularizations of the Navier-Stokes equations. We then propose a new spectral hyper-viscosity model that regularizes the Navier-Stokes equations while being spectrally accurate. We finally review scale-similarity models and two-scale subgrid viscosity models. A new energetically coherent scale-similarity model is proposed for which the filter does not require any commutation property nor solenoidality of the advection field. We also show that two-scale methods are mathematically justified in the sense that, when applied to linear non-coercive PDEs, they actually yield convergence in the graph norm.  相似文献   

13.
A mathematical model for the propagation of longwave perturbations in a freeboundary shear flow of an ideal stratified twolayer fluid is considered. The characteristic equation defining the velocity of perturbation propagation in the fluid is obtained and studied. The necessary hyperbolicity conditions for the equations of motion are formulated for flows with a monotonic velocity profile over depth, and the characteristic form of the system is calculated. It is shown that the problem of deriving the sufficient hyperbolicity conditions is equivalent to solving a system of singular integral equations. The limiting cases of weak and strong stratification are studied. For these models, the necessary and sufficient hyperbolicity conditions are formulated, and the equations of motion are reduced to the Riemann integral invariants conserved along the characteristics.  相似文献   

14.
In this paper, a new mathematical framework based on h, p, k and variational consistency (VC) of the integral forms is utilized to develop a finite element computational process of two‐dimensional polymer flows utilizing Oldroyd‐B constitutive model. Alternate forms of the choices of dependent variables in the governing differential equations (GDEs) are considered and is concluded that u, v, p, τ choice yielding strong form of the GDEs is meritorious over others. It is shown that: (a) since, the differential operator in the GDEs is non‐linear, Galerkin method and Galerkin method with weak form are variationally inconsistent (VIC). The coefficient matrices in these processes are non‐symmetric and hence may have partial or completely complex basis and thus the resulting computational processes may be spurious. (b) Since the VC of the VIC integral forms cannot be restored through any mathematically justifiable means, the computational processes in these approaches always have possibility of spurious solutions. (c) Least squares process utilizing GDEs in u, v, p, τ (strong form of the GDEs) variables (as well as others) is variationally consistent. The coefficient matrices are always symmetric and positive definite and hence always have a real basis and thus naturally yield computational processes that are free of spurious solutions. (d) The theoretical solution of the GDEs are generally of higher order global differentiability. Numerical simulations of such solutions in which higher order global differentiability characteristics of the theoretical solution are preserved, undoubtedly requires local approximations in higher order scalar product spaces . (e) LSP with local approximations in spaces provide an incomparable mathematical and computational framework in which it is possible to preserve desired characteristics of the theoretical solution in the computational process. Numerical studies are presented for fully developed flow between parallel plates and a lid driven square cavity. M1 fluid is used in all numerical studies. The range of applicability of the Oldroyd‐B model or lack of it is examined for both model problems for increasing De. A mathematical idealization of the corners where stationary wall meets the lid is presented and is shown to simulate the real physics when the local approximations are in higher order spaces and when hd→0. For both model problems shear rate is examined in the flow domain to establish validity of the Oldroyd‐B constitutive model. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
16.
A mathematical model of gaslaser cutting of metal plates in an inert gas is proposed. The formation and flow of the liquid metal melt film at the cutting front is considered within the framework of incompressible boundarylayer equations. Based on the resultant analytical solution, a local law of energy conservation on the cutting surface is derived, which takes into account the meltfilm thickness and the temperature dependence of thermophysical parameters of the metal. The problem of the cutting shape and depth is solved in the twodimensional formulation. A comparison with experimental data is made in terms of the cutting depth and maximum cutting velocity for carbon and alloy steel.  相似文献   

17.
Summary A mathematical model for a hydraulic servomechanism is constructed. It is shown that the model, in general, reduces to a nonlinear third-order equation of the formxx+(1+xx+–2 x=p(t). Under certain conditions imposed on the constants involved, it is proved that above equation possesses a periodic solution.  相似文献   

18.
This paper describes an experimental study of the properties of vortex rings with variation of parameters of the air jet expelled from a round nozzle by a special device. Characteristics of the vortex rings were determined by hotwire anemometer measurements of the velocity field at a certain distance from the nozzle exit where vortex formation is presumably completed. A mathematical model for the formation of a vortex ring based on conservation laws is proposed, and a comparison of theoretical results with experimental data is given.  相似文献   

19.
The dynamic behaviour of a specific two-dimensional state space model with discontinuity is studied. This model arises from the study of double-loop -modulators with constant input. Using mathematical tools we explain certain simulation results, and some properties are derived. Simulations based on time-varying input are also provided.  相似文献   

20.
A survey is presented concerning fixed domain methods used to solve mathematical models of free and moving boundary flow problems in porous media. These include the following: variational inequality or quasi-variational inequality formulations; general inequality formulations which have been set and solved in fixed domains; and the residual flow procedure. Finally, some parallel computing methods and mesh adaptation methods are discussed to demonstrate how these fixed domain formulations can be solved with current technology.The fixed domain methods that are referenced herein can be classified into two groups: the variational inequality method and the extended pressure head method. Baiocchi was the first to apply the variational inequality method to free boundary problems of flows through porous media. This method in general also uses an extension of the pressure head but adds an application of an integral transformation (a Baiocchi transformation) to the problem. The method possesses a beautiful mathematical structure for its theory and yields simple numerical solution algorithms. However, application of the method is difficult if not impossible in some cases depending upon the regularity of the seepage domain.The extended pressure head method is based on the concept that the pressure is extended smoothly across the free or moving boundary into the unsaturated region from the flow domain. The extension of the pressure head to the entire porous medium yields an extended coefficient of permeability of the medium which is equal to the saturated coefficient in the seepage region and is equal to zero or some small value (for computational purposes) in the unsaturated region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号