首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interfacial behavior of aqueous solutions of four different neutral polymers in the presence of sodium dodecyl sulfate (SDS) has been investigated by surface tension measurements and ellipsometry. The polymers comprised linear poly(ethylene oxide) with low and high molecular masses (10(3) and 10(6) Dalton (Da), respectively), and two high molecular mass methacrylate-based comb polymers containing poly(ethylene oxide) side chains. The adsorption isotherms of SDS, determined by Gibbs analysis of surface tension data, are nearly the same in the presence of the high molecular mass linear polymer and the comb polymers. Analysis of the ellipsometric data reveals that while a single surface layer model is appropriate for films of polymer alone, a more sophisticated interfacial layer model is necessary for films of SDS alone. For the polymer/surfactant mixtures, a novel semiempirical approach is proposed to determine the surface excess of polymer, and hence quantify the interfacial composition, through analysis of data from the two techniques. The replacement of the polymer due to surfactant adsorption is much less pronounced for the high molecular mass linear polymer and for the comb polymers than for the low molecular mass linear polymer. This finding is rationalized by the significantly higher adsorption driving force of the larger polymer molecules as well as by their more amphiphilic structure in the case of the comb polymers.  相似文献   

2.
Poly(lactic acid) (PLA) and poly(lactic/glycolic acid) copolymers (PLGA) are biodegradable drug carriers of great importance, although successful pharmaceutical application requires adjustment of the surface properties of the polymeric drug delivery system to be compatible with the biological environment. For that reason, reduction of the original hydrophobicity of the PLA or PLGA surfaces was performed by applying a hydrophilic polymer poly(ethylene oxide) (PEO) with the aim to improve biocompatibility of the original polymer. PEO-containing surfaces were prepared by incorporation of block copolymeric surfactants, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronic), into the hydrophobic surface. Films of polymer blends from PLA or PLGA (with lactic/glycolic acid ratios of 75/25 and 50/50) and from Pluronics (PE6800, PE6400, and PE6100) were obtained by the solvent casting method, applying the Pluronics at different concentrations between 1 and 9.1% w/w. Wettability was measured to monitor the change in surface hydrophobicity, while X-ray photoelectron spectroscopy (XPS) was applied to determine the composition and chemical structure of the polymer surface and its change with surface modification. Substantial reduction of surface hydrophobicity was achieved on both the PLA homopolymer and the PLGA copolymers by applying the Pluronics at various concentrations. In accordance with the wettability changes the accumulation of Pluronics in the surface layer was greatly affected by the initial hydrophobicity of the polymer, namely, by the lactide content of the copolymer. The extent of surface modification was also found to be dependent on the type of blended Pluronics. Surface activity of the modifying Pluronic component was interpreted by using the solubility parameters.  相似文献   

3.
A series of poly(D,L-lactic-co-glycolic acid) (PLGA)/poly(ethyleneglycol) (PEG) di-block copolymers were synthesized by ring-opening polymerization of D,L-lactide and glycolide with different molecular weights of monomethoxy polyethyleneglycol (mPEG) 750, 2000 and 5000 as an initiator. The bulk properties of these co-polymers were characterized by using 1H NMR spectroscopy, gel permeation chromatography, differential scanning calorimetry (DSC). Electron spectroscopy for chemical analysis (ESCA) results, in which the blend films with the di-block copolymers showed increasing surface oxygen atomic percentage with increasing PEG chain length, indicate that PEG chain segment in the di-block copolymers is surface oriented and enriched onto the surface of the blend films. The extent of protein adsorption onto the surface of these blend films was studied, using iodine radio-labeled human serum albumin, gamma globulin and human growth hormone. The protein adsorption amount was reduced for the blend films prepared with PLGA/PEG 750 and 2000 di-block copolymers, but increased to a great extent for PLGA/PEG 5000 di-block copolymer. This is due to the increased water uptake capacity of the blend film, which absorbed more protein molecules into a swollen polymer matrix in addition to surface adsorption.  相似文献   

4.
A method of securing the adhesion of biodegradable polymer coating was investigated for drug-eluting metal stents, using surface-initiated ring-opening polymerization (SI-ROP) of L-lactide. Introduction of oligolactide on the stainless steel (SS) surface was successful and the thickness of the oligolactide grafts remained on the nanometer scale, as determined by ellipsometry. The presence of an oligolactide graft was also identified using attenuated total reflection-Fourier transform infrared (ATR-FTIR) and electron spectroscopy for chemical analysis (ESCA). On top of the grafts, poly(D,L-lactide-co-glycolide) (PLGA) coating was carried out on different substrates such as SS control, plasma-treated SS, and lactide-grafted (referred to as a nanocoupled) SS using electrospraying. When the adhesion forces were measured with a scratch tester, the nanocoupled SS showed the strongest interfacial adhesion between polymer coating layer and metal substrate. The outcome of the peel-off test was also consistent with the result of the scratch test. When degradation behavior of the polymer coating in vitro was examined for up to 4 weeks in a continuous fluid flow, the SEM images demonstrated that polymer degradation was obvious due to hydration and swelling of the polymer matrix. Although the matrix completely disappeared after 4 weeks for SS control and plasma-treated substrates, the nanocoupled SS was persistent with some polymer matrix. In addition, the release profiles of SRL-loaded PLGA coating appeared slightly different between control and nanocoupled groups. This work suggested that the concept of nanocoupling remarkably improved the interfacial adhesion stability between metal surface and polymer layer and controlled drug release, and showed the feasibility of drug-eluting stents.  相似文献   

5.
In this work the preparation mechanism, properties and temperature-triggered aggregation of poly(D, L-lactide- co-glycolide) (PLGA) dispersions are investigated. The dispersions were prepared by interfacial deposition in aqueous solution containing Pluronic L62 (EO(6)PO(30)EO(6)) or F127NF (EO(101)PO(56)EO(101)), where EO and PO are ethylene oxide and propylene oxide, respectively. PLGA dispersions were also prepared in the absence of added Pluronic for comparison. The PLGA particles were characterized using SEM, photon correlation spectroscopy and electrophoretic mobility measurements. It was found that the hydrodynamic diameter (d) increased with PLGA concentration used in the organic solvent phase ( C PLGA(o) ). The value for d was proportional to C(PLGA)(o) (1/3). The value for d increased upon addition of 0.04 M NaNO(3) which demonstrated the importance of electrostatic interactions during particle formation. Electrophoretic mobility measurements were conducted as a function of pH and the data used to estimate the Pluronic layer thicknesses on the PLGA particles. The layer thickness was greatest for the PLGA particles prepared in the presence of Pluronic F127NF. PLGA dispersions containing Pluronic L62 exhibited temperature-triggered aggregation in the presence of 0.15 M NaNO(3). It was found that the critical temperature for dispersion aggregation (T(crit)) was comparable to the cloud point temperature ( T(cp)) for the parent Pluronic L62 solution. Conditions were established for achieving temperature-triggered aggregation at body temperature for PLGA particle/Pluronic L62 dispersions under physiological ionic strength and pH conditions. The PLGA/Pluronic L62 mixtures studied may have potential for use as injectable biodegradable implants for controlled release applications.  相似文献   

6.
Electrospun poly(dl-lactide-co-glycolide) (PLGA) microfibers have been explored as extra cellular matrix mimicking scaffolding systems for tissue engineering application. However, the hydrophobic nature of PLGA can be limiting in terms of protein adsorption. Hence, blending of PLGA with a hydrophilic polymer (Pluronic®) prior to electrospinning has been explored as a potential strategy to impart hydrophilicity to PLGA microfibers. In this study, PLGA (85/15) was blended with small quantities (0.5-2% w/v) of Pluronic® F-108 (PF-108) and electrospun into microfibers. Blending of PF-108 demonstrated a significant decrease in the surface hydrophilicity of microfibers as was evidenced by an increase in wetting tension. Surface analysis using XPS indicated the presence of PF-108 in the bulk of the fibers in addition to the surface of the fibers. The results of the water uptake studies indicated that the water uptake capacity and consequential fiber swelling was significantly increased in the presences of PF-108. The in vitro degradation studies demonstrated that the trend in molecular weight loss was not significantly influenced by the presence of small quantities of PF-108. Therefore, blending of PLGA with PF-108 could be an effective technique for surface modification of electrospun PLGA microfibers without compromising on the other advantages of PLGA.  相似文献   

7.
The adsorption behavior of self-assembled lipid liquid crystalline nanoparticles at different model surfaces was investigated in situ by use of ellipsometry. The technique allows time-resolved monitoring of the adsorbed amount and layer thickness under transient and steady-state conditions. The system under study was cubic-phase nanoparticle (CPNP) dispersions of glycerol monooleate stabilized by a nonionic block copolymer, Pluronic F-127. Depending on the surface properties and presence of electrolytes, different adsorption scenarios were discerned: At hydrophilic silica thick surface layers of CPNPs are generated by particle adsorption from dispersions containing added electrolyte, but no adsorption is observed in pure water. Adsorption at the hydrophobic surface involves extensive structural relaxation and formation, which is not electrolyte sensitive, of a classic monolayer structure. The different observations are rationalized in terms of differences in interactions among the CPNP aggregates, their unimer constituents, and the surface and show a strong influence of interfacial interactions on structure formation. Surface self-assembly structures with properties similar to those of the corresponding bulk aggregates appear exclusively in the weak interaction limit. This observation is in agreement with observations for surfactant self-assembly systems, and our findings indicate that this behavior is applicable also to complex self-assembly structures such as the CPNP structures discussed herein.  相似文献   

8.
Structure of Protein Layers during Competitive Adsorption   总被引:1,自引:0,他引:1  
The formation of protein layers during competitive adsorption was studied with ellipsometry. Single, binary, and ternary protein solutions of human serum albumin (HSA), IgG, and fibrinogen (Fgn) were investigated at concentrations corresponding to blood plasma diluted 1/100. As a model surface, hydrophobic hexamethyldisiloxane (HMDSO) plasma polymer modified silica was used. By using multiambient media measurements of the bare substrate prior to protein adsorption the adsorbed amount as well as the thickness and refractive index of the adsorbed protein layer could be followedin situand in real time. Under conditions used in these experiments neither IgG nor fibrinogen could fully displace serum albumin from the interface. The buildup of the protein layer occurred via different mechanisms for the different protein systems. Fgn adsorbed in a rather flat orientation at low adsorbed amounts, while at higher surface coverage the protein reoriented to a more upright orientation in order to accommodate more molecules in the adsorbed layer. IgG adsorption proceeded mainly end-on with little reorientation or conformational change on adsorption. Finally, for HSA an adsorbed layer thickness greater than the molecular dimensions was observed at high concentrations (although not at low), indicating that aggregates or multilayers formed on HMDSO plasma polymer surfaces. For all protein mixtures the adsorbed layer structure and buildup indicated that Fgn was the protein dominating the adsorbed layer, although HSA partially blocked the adsorption of this protein. At high surface concentration, HSA/Fgn mixtures show an abrupt change in both adsorbed layer thickness and refractive index suggesting, e.g., an interfacial phase transition of the mixed protein layer. A similar but less pronounced behavior was observed for HSA/IgG. For IgG/Fgn and HSA/IgG/Fgn a buildup of the adsorbed layer similar to that displayed by Fgn alone was observed.  相似文献   

9.
Hydrophilic modification of ultrafiltration membranes was achieved through blending of Pluronic F127 with poly(ether sulfone) (PES). The chemical composition and morphology changes of the membrane surface were confirmed by water contact angle, X-ray photoelectron spectroscopy, scanning electron microscopy, and protein adsorption measurements. The decreased static water contact angle with an increase in the Pluronic F127 content indicated an increase of surface hydrophilicity. XPS analysis revealed enrichment of PEO segments of Pluronic F127 at the membrane surface. The apparent protein adsorption amount decreased significantly from 56.2 to 0 microg/cm(2) when the Pluronic F127 content varied from 0% to 10.5%, which indicated that the blend membrane had an excellent ability to resist protein adsorption. The ultrafiltration experiments revealed that the Pluronic F127 content had little influence on the protein rejection ratio and pure water flux. Most importantly, at a high Pluronic F127 content membrane fouling, especially irreversible fouling, has been remarkably reduced. The flux recoveries of blend membranes reached as high as 90% after periodic cleaning in three cycles.  相似文献   

10.
We blended Pluronic F127 into polyethersulfone (PES) to improve surface properties of PES, which has been extensively used in biomaterial and other applications. The molecular surface structures of PES/Pluronic F127 blends have been investigated by sum-frequency generation (SFG) vibrational spectroscopy. The molecular orientation of surface functional groups of PES changed significantly when blended with a small amount of Pluornic F127. Pluronic F127 on the blend surface also exhibited different features upon contacting with water. The entanglement of PES chains with Pluronic F127 molecules rendered the blends with long-term surface stability in water in contrast to the situation where a layer of Pluronic F127 adsorbed on the PES surface. Atomic force microscopy (AFM) and quartz crystal microbalance (QCM) measurements were included to determine the relative amount of protein that adsorbed to the blend surfaces. The results showed a decreased protein adsorption amount with increasing Pluronic F127 bulk concentration. The correlations between polymer surface properties and detailed molecular structures obtained by SFG would provide insight into the designing and developing of biomedical polymers and functional membranes with improved fouling-resistant properties.  相似文献   

11.
Neutral polymeric surfactants were synthesized by covalent attachment of hydrophobic groups (aromatic rings) onto a polysaccharide backbone (dextran). By changing the conditions of the modification reaction, the number of grafted hydrophobic groups per 100 glucopyranose units (substitution ratio) was varied between 7 and 22. In aqueous solution, these polymers behaved like classical associative polymers as demonstrated by viscometric measurements. The associative behavior was more pronounced when the substitution ratio increased. The surface-active properties of the modified dextrans were evidenced by surface tension (air/water) and interfacial tension (dodecane/water) measurements. In each case the surface or interfacial tension leveled down above a critical polymer concentration, which was attributed to the formation of a dense polymer layer at the liquid-air or liquid-liquid interface. Dodecane-in-water emulsions were prepared using the polymeric surfactants as stabilizers, with oil volume fractions ranging between 5 and 20%. The oil droplet size (measured by dynamic light scattering) was correlated to the amount of polymer in the aqueous phase and to the volume of emulsified oil. The thickness of the adsorbed polymer layer was estimated thanks to zeta potential measurements coupled with size measurements. This thickness increased with the amount of polymer available for adsorption at the interface. The dextran-based surfactants were also applied to emulsion polymerization of styrene and stable polystyrene particles were obtained with a permanent adsorbed dextran layer at their surface. The comparison with the use of an unmodified dextran indicated that the polymeric surfactants were densely packed at the surface of the particles. The colloidal stability of the suspensions of polystyrene particles as well as their protection against protein adsorption (bovine serum albumin, BSA, used as a test protein) were also examined.  相似文献   

12.
Over the last decades numerous studies on the interfacial rheological response of protein adsorption layers have been published. The comparison of these studies and the retrieval of a common parameter to compare protein interfacial activity are hampered by the fact that different boundary conditions (e.g. physico-chemical, instrumental, interfacial) were used. In the present work we review previous studies and attempt a unifying approach for the comparison between bulk protein properties and their adsorption films. Among many common food grade proteins we chose bovine serum albumin, β-lactoglobulin and lysozyme for their difference in thermodynamic stability and studied their adsorption at the air/water and limonene/water interface. In order to achieve this we have i) systematically analyzed protein adsorption kinetics in terms of surface pressure rise using a drop profile analysis tensiometer and ii) we addressed the interfacial layer properties under shear stress using an interfacial shear rheometer under the same experimental conditions. We could show that thermodynamically less stable proteins adsorb generally faster and yield films with higher shear rheological properties at air/water interface. The same proteins showed an analog behavior when adsorbing at the limonene/water interface but at slower rates.  相似文献   

13.
The solution behavior of the polymeric surfactant Pluronic F127 (PEO(99)PPO(65)PEO(99)) and its adsorption behavior on aqueous-silica and aqueous-air interfaces, as well as the disjoining pressure isotherms of asymmetric films (silica/aqueous film/air) containing F127, are studied. The interfacial properties of adsorbed F127 layers (the adsorbed amount Gamma and the thickness h) as well as the aqueous wetting film properties [film thickness (h) and refractive indexes] were studied via ellipsometry. The solution properties of F127 were investigated using surface tensiometry and light scattering. The interactions between the air-water and silica-water interfaces were measured with a thin film pressure balance technique (TFB) and interpreted in terms of disjoining pressure as a function of the film thickness. The relations between the behaviors of the asymmetric films, adsorption at aqueous air, and aqueous silica interfaces and the solution behavior of the polymeric surfactant are discussed. Special attention is paid to the influence of the concentrations of F127 and NaCl. Addition of electrolyte lowers the critical micelle concentration, diminishes adsorption on silica, and increases the thickness of the asymmetric film.  相似文献   

14.
采用分子动力学模拟方法比较了溶菌酶蛋白在两种典型聚合物防污材料聚乙二醇(PEG)和聚二甲基硅氧烷(PDMS)表面的吸附行为, 在微观上探讨了聚合物膜表面性质对蛋白质吸附的影响. 根据蛋白质与聚合物膜之间的相互作用、能量变化及表面水化层分子的动力学行为, 解释了PEG防污涂层相对于PDMS表面具有更佳防污效果的原因: (1) 相比PDMS涂层, 蛋白质与PEG涂层的结合能量较低, 使其结合更加疏松; (2) 蛋白质吸附到材料表面要克服表面水化层分子引起的能障, PEG表面与水分子之间结合紧密, 结合水难于脱附, 造成蛋白质在其表面的吸附需要克服更高的能量, 不利于蛋白质的吸附.  相似文献   

15.
采用分子动力学模拟方法比较了溶菌酶蛋白在两种典型聚合物防污材料聚乙二醇(PEG)和聚二甲基硅氧烷(PDMS)表面的吸附行为,在微观上探讨了聚合物膜表面性质对蛋白质吸附的影响.根据蛋白质与聚合物膜之间的相互作用、能量变化及表面水化层分子的动力学行为,解释了PEG防污涂层相对于PDMS表面具有更佳防污效果的原因:(1)相比PDMS涂层,蛋白质与PEG涂层的结合能量较低,使其结合更加疏松;(2)蛋白质吸附到材料表面要克服表面水化层分子引起的能障,PEG表面与水分子之间结合紧密,结合水难于脱附,造成蛋白质在其表面的吸附需要克服更高的能量,不利于蛋白质的吸附.  相似文献   

16.
The pendant-drop method (with drop-shape analysis) and Langmuir trough are applied to investigate the characteristic relaxation times and elasticity of interfacial layers from the protein HFBII hydrophobin. Such layers undergo a transition from fluid to elastic solid films. The transition is detected as an increase in the error of the fit of the pendant-drop profile by means of the Laplace equation of capillarity. The relaxation of surface tension after interfacial expansion follows an exponential-decay law, which indicates adsorption kinetics under barrier control. The experimental data for the relaxation time suggest that the adsorption rate is determined by the balance of two opposing factors: (i) the barrier to detachment of protein molecules from bulk aggregates and (ii) the attraction of the detached molecules by the adsorption layer due to the hydrophobic surface force. The hydrophobic attraction can explain why a greater surface coverage leads to a faster adsorption. The relaxation of surface tension after interfacial compression follows a different, square-root law. Such behavior can be attributed to surface diffusion of adsorbed protein molecules that are condensing at the periphery of interfacial protein aggregates. The surface dilatational elasticity, E, is determined in experiments on quick expansion or compression of the interfacial protein layers. At lower surface pressures (<11 mN/m) the experiments on expansion, compression and oscillations give close values of E that are increasing with the rise of surface pressure. At higher surface pressures, E exhibits the opposite tendency and the data are scattered. The latter behavior can be explained with a two-dimensional condensation of adsorbed protein molecules at the higher surface pressures. The results could be important for the understanding and control of dynamic processes in foams and emulsions stabilized by hydrophobins, as well as for the modification of solid surfaces by adsorption of such proteins.  相似文献   

17.
合成了结构可切换型甲基丙烯酸酯季铵盐(CBMA-1C2). 在聚丙烯(PP)片基表面光接枝构建CBMA-1C2聚合物刷, 其在碱性水溶液中可水解形成两性离子聚合物刷PCBMA. 用蛋白质吸附及血小板黏附实验评价改性表面亲/疏水性及表面电荷对生物分子与材料表面之间相互作用的影响. 结果发现, 与未改性PP片基相比, 聚合物PCBMA-1C2改性表面水解前后均具有优异的亲水性能, 由于聚合物PCBMA-1C2水解前后表面电荷不同, 对生物分子与改性PP表面的相互作用表现出明显差异. 亲水性好、 两性离子结构的聚合物PCBMA表面表现出对蛋白吸附和血小板黏附的良好抑制作用.  相似文献   

18.
The conformation and the dilatational properties of three non-ionic triblock PEO-PPO-PEO (where PEO is polyethyleneoxide and PPO is polypropyleneoxide) copolymers of different hydrophobicity and molecular weight were investigated at the water-hexane interface. The interfacial behavior of the copolymers was studied by combining dilatational rheology using the oscillating drop method and ellipsometry. From the dilatational rheology measurements the limiting elasticity values, E(0), of the Pluronics as function of surface pressure, Π, and adsorption time were obtained, i.e. E(0)(t) and E(0)(Π). Here, it is shown that E(0)(t) depends on the number of PEO units and on the bulk concentration, showing maximum and minimum surface elasticity values which indicate conformational changes in the interfacial layer. Furthermore, in the framework of the polymer scaling law theory, conformational transitions were discussed in E(0) vs. Π plots. In a dilute regime (Π<14 mN m(-1)) at the water-hexane interface, E(0)=2Π fits well all the data, which indicates a two-dimensional "stretched chain" conformation. Increasing Π, two other interfacial transitions could take place. The different behavior of Pluronic copolymers could be also described by the local minima of E(0), which depends on the hydrophobicity of the copolymers. Conformational transitions observed by interfacial rheology were compared to ellipsometric data. Experimental results were discussed and explained on the basis of two- and three-dimensional copolymer structure taking into account that PPO chains could be partially immersed in hexane and water.  相似文献   

19.
The effects of the types and the ratios of various organic solvents used as a mixtures to dissolve poly (lactide-co-glycolide) (PLGA) by using a solvent evaporation method, a technique used to prepare polymer particles, were carefully studied in order to investigate their advantages in developing drug delivery system (DDS) formulations for the prepared microspheres. The particle size and drug loading efficiency of drug-containing PLGA microspheres were found to be dependent on the types of solvent used due to the interfacial tension between the organic solvent and water phase. The drug loading efficiency of monodisperse microspheres prepared by using a membrane emulsification technique employing organic solvents and high interfacial tension for dissolving the PLGA was increased in a controlled manner. The organic solvents with high interfacial tension in the water phase used for the preparation of polymer particles by means of the solvent evaporation method were found to be suitable in terms of improvement in the properties of DDS formulations.  相似文献   

20.
Nonlamellar liquid crystalline dispersions such as cubosomes and hexosomes have great potential as novel surface-targeted active delivery systems. In this study, the influence of internal nanostructure, chemical composition, and the presence of Pluronic F127 as a stabilizer, on the surface and interfacial properties of different liquid crystalline particles and surfaces, was investigated. The interfacial properties of the bulk liquid crystalline systems with coexisting excess water were dependent on the internal liquid crystalline nanostructure. In particular, the surfaces of the inverse cubic systems were more hydrophilic than that of the inverse hexagonal phase. The interaction between F127 and the bulk liquid crystalline systems depended on the internal liquid crystalline structure and chemical composition. For example, F127 adsorbed to the surface of the bulk phytantriol cubic phase, while for monoolein cubic phase, F127 was integrated into the liquid crystalline structure. Last, the interfacial adsorption behavior of the dispersed liquid crystalline particles also depended on both the internal nanostructure and the chemical composition, despite the dispersions all being stabilized using F127. The findings highlight the need to understand the specific surface characteristics and the nature of the interaction with colloidal stabilizer for understanding and optimizing the behavior of nonlamellar liquid crystalline systems in surface delivery applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号