首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present article describes the spectrofluorimetric determination of galantamine, a widely used acetylcholinesterase inhibitor, through excitation-emission fluorescence matrices and second-order calibration. With the purpose of enhancing the fluorescence intensity of this substance, the effect of different organized assemblies was evaluated. Although the interaction of galantamine with different cyclodextrins is weak, it was corroborated that the fluorescence intensity of this pharmaceutical in the presence of α-cyclodextrin is increased by a twofold factor. Among the studied micellar media, the anionic surfactant sodium dodecyl sulfate produced the largest signals for the compound of interest (sixfold enhancement), and was selected as auxiliary reagent for the subsequent determinations. The developed approach enabled the determination of galantamine at the ng mL−1 level without the necessity of applying separation steps, and in the presence of uncalibrated interferences. The applied second-order chemometric tools were parallel factor analysis (PARAFAC), unfolded partial least-squares coupled to residual bilinearization (U-PLS/RBL), and multidimensional partial least-squares coupled to residual bilinearization (N-PLS/RBL). The ability of U-PLS/RBL to successfully overcome spectral interference problems is demonstrated. The quality of the proposed method was established with the determination of galantamine in both artificial and natural water samples.  相似文献   

2.
A simple and rapid method based on solid-phase micro extraction (SPME) technique followed by gas chromatography-mass spectrometry with selected ion monitoring (GC-MS, SIM) was developed by the simultaneous determination of 16 pesticides of seven different chemical groups [Six organophosphorus (trichlorfon, diazinon, methyl parathion, malathion, fenthion and ethyon), three pyrethroids (bifenhin, permethrin, cypermethrin), two imidazoles (imazalil and prochloraz), two strobilurins (azoxystrobin and pyraclostrobin), one carbamate (carbofuran), one tetrazine (clofentezine), and one triazole (difenoconazole)] in water. The pesticides extraction was done with direct immersion mode (DI-SPME) of the polyacrilate fiber (PA 85 µm). The extraction temperature was adjusted to 50 °C during 30 min, while stirring at 250 rpm was applied. After extraction, the fiber was introduced in the GC injector for thermal desorption for 5 min. at 280 °C. The method was validated using ultra pure water samples fortified with pesticides at different concentration levels and shows good linearity in the concentrations between 0.05 and 250.00 ng mL− 1. The LOD and LOQ ranged, from 0.02 to 0.30 ng mL− 1 and 0.05 to 1.00 ng mL− 1, respectively. Intra-day and inter-day precisions were determined in two concentration levels (5.00 and 50.00 ng mL− 1). Intra-day relative standard deviation (%R.S.D.) ranged between 3.6 and 13.6%, and inter-day (%R.S.D.) ranged between 6.3 and 18.5%. Relative recovery tests were carried out spiking the ultra pure sample with standards in three different concentration levels 0.20, 5.00 and 50.00 ng mL− 1. The recovery at 0.20 ng mL− 1 level varied from 86.4 ± 9.4% to 108.5 ± 10.5%, at 5.00 ng mL− 1 level varied from 77.5 ± 10.8% to 104.6 ± 9.6% and at 50.00 ng mL− 1 level varied from 70.2 ± 4.6% to 98.4 ± 8.5%. The proposed SPME method was applied in twenty-six water samples collected in the “Platô de Neópolis”, State of Sergipe, Brazil. Methyl parathion was detected in five samples with an average concentration of 0.17 ng mL− 1 and bifenthrin, pyraclostrobin and azoxystrobin residues were found in three samples with average concentrations of 2.28, 3.12 and 0.15 ng mL− 1, respectively.  相似文献   

3.
Multi-way partial least-squares (N-PLS) is combined to the residual bi-linearization procedure (RBL) for the direct analysis of metabolites of polycyclic aromatic hydrocarbons in urine samples. Metabolite analysis is carried out via a two-step experimental procedure based on solid-phase extraction and room temperature fluorescence spectroscopy. Excitation-emission matrices are recorded from octadecyl (C18) membranes that serve as solid substrates for sample extraction and spectroscopic measurements. Excellent metabolite recoveries were obtained in all cases, which varied from 96.2 ± 1.35% (9-hydroxyphenanthrene) to 99.7 ± 0.49% (3-hydroxybenzo[a]pyrene). Background correction of extraction membranes is carried out with a new alternating least-squares (ALS) procedure adapted to second order data. The performance of N-PLS/RBL is compared to the well-established multivariate curve resolution-alternating least-squares (MCR-ALS) algorithm. Both algorithms provided similar analytical figures of merit, including their ability to handle unknown interference in urine samples. With only 10 mL of sample, the limits of detection varied between 0.06–0.08 ng mL−1 (1-hydroxypyrene) and 0.016–0.018 ng mL−1 (2-hydroxyfluorene). When compared to previously reported univariate calibration data, the limits of detection via N-PLS/RBL and MCR-ALS are approximately one order of magnitude higher. This was somehow expected due to the effect of unexpected components in multivariate figures of merit, i.e. a more realistic approach to the analysis of metabolites in human urine samples.  相似文献   

4.
Gao X  Zhang Y  Wu Q  Chen H  Chen Z  Lin X 《Talanta》2011,85(4):1980-1985
A simple and controllable one-step electrodeposition method for the preparation of a chitosan-carbon nanotubes-gold nanoparticles (CS-CNTs-GNPs) nanocomposite film was used to fabricate an immunosensor for detection of carcinoembryonic antigen (CEA). The porous three-dimensional CS-CNTs-GNPs nanocomposite film, which offered a large specific surface area for immobilization of antibodies, exhibited improved conductivity, high stability and good biocompatibility. The morphology of the formed nanocomposite film was investigated by scanning electron microscopy (SEM), and the electrochemical behaviors of the immunosensor were characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Under the optimal conditions, the proposed immunosensor could detect CEA in two linear ranges from 0.1 to 2.0 ng mL−1 and from 2.0 to 200.0 ng mL−1, with a detection limit of 0.04 ng mL−1. The immunosensor based on CS-CNTs-GNPs nanocomposite film as the antibody immobilization matrix could exhibit good sensitivity, stability, and reproducibility for the determination of CEA.  相似文献   

5.
In the presented work, a disposable immunosensor for the detection of testosterone, an endogenous steroid hormone, in bovine urine has been developed using screen-printed electrodes (SPEs). Due to concerns over the use of steroid hormones as growth promoters, the EU prohibits their use in food producing animals. Consequently, rigorous screening procedures have been implemented in all member states to detect the illegal administration of such compounds. Competitive immunoassays were developed, initially by enzyme linked immunosorbent assay (ELISA), and subsequently transferred to an electrochemical immunosensor format using disposable screen-printed carbon electrodes. Horseradish peroxidase (HRP) was the enzyme label of choice and chronoamperometric detection was carried out using a tetramethylbenzidine/hydrogen peroxide (TMB/H2O2) substrate system, at +100 mV. The EC50 values obtained for the assay in buffer and urine gave relatively comparable results, 710 pg mL−1 and 960 pg mL−1, respectively. The linear range obtained for the assay in buffer extended from 0.03 ng mL−1 to 40 ng mL−1; while that in urine ranged from 0.03 ng mL−1 to 1.6 ng mL−1. The corresponding limits of detection (LOD) in buffer and urine were 26 pg mL−1 and 1.8 pg mL−1. Cross reactivity profiles of the antibody have been examined, with notable cross reactivities with 19-nortestosterone (11.6%) and boldenone (9.86%). Precision studies for the sensor demonstrated adequate reproducibility (CV < 13%, n = 3) and repeatability (CV < 9%, n = 3). Recovery data obtained showed good agreement between spiking studies and known concentrations of analyte. Sensors showed stability for 4 days at +4 °C. A sensitive, highly specific, inexpensive, disposable immunosensor, showing excellent overall performance for the detection of testosterone in bovine urine, has been developed.  相似文献   

6.
Abdorreza Mohammadi 《Talanta》2009,78(3):1107-1114
A simple and rapid headspace solid-phase microextraction (HS-SPME) based method is presented for the simultaneous determination of atrazine and ametryn in soil and water samples by ion mobility spectrometry (IMS). A dodecylsulfate-doped polypyrrole (PPy-DS), synthesized by electrochemical method, was applied as a laboratory-made fiber for SPME. The HS-SPME system was designed with a cooling device on the upper part of the sample vial and a circulating water bath for adjusting the sample temperature. The extraction properties of the fiber to spiked soil and water samples with atrazine and ametryn were examined, using a HS-SPME device and thermal desorption in injection port of IMS. Parameters affecting the extraction efficiency such as the volume of water added to the soil, pH effect, extraction time, extraction temperature, salt effect, desorption time, and desorption temperature were investigated. The HS-SPME-IMS method with PPy-DS fiber, provided good repeatability (RSDs < 10 %), simplicity, good sensitivity and short analysis times for spiked soil (200 ng g−1) and water samples (100 and 200 ng mL−1). The calibration graphs were linear in the range of 200-4000 ng g−1 and 50-2800 ng mL−1 for soil and water respectively (R2 > 0.99). Detection limits for atrazine and ametryn were 37 ng g−1 (soil) and 23 ng g−1 (soil) and 15 ng mL−1 (water) and 10 ng mL−1 (water), respectively. To evaluate the accuracy of the proposed method, atrazine and ametryn in the three kinds of soils and two well water samples were determined. Finally, comparing the HS-SPME results for extraction and determination of selected triazines using PPy-DS fiber with the other methods in literature shows that the proposed method has comparable detection limits and RSDs and good linear ranges.  相似文献   

7.
A novel photonic suspension array was developed for multiplex immunoassay. The carries of this array were silica colloidal crystal beads (SCCBs). The codes of these carriers are the characteristic reflection peak originated from their structural periodicity, and therefore they do not suffer from fading, bleaching, quenching, and chemical instability. In addition, because no dyes or materials related with fluorescence are included, the fluorescence background of SCCBs is very low. With a sandwich format, the proposed suspension array was used for simultaneous multiplex detection of tumor markers in one test tube. The results showed that the four tumor markers, α-fetoprotein (AFP), carcinoembryonic antigen (CEA), carcinoma antigen 125 (CA 125) and carcinoma antigen 19-9 (CA 19-9) could be assayed in the ranges of 1.0-500 ng mL−1, 1.0-500 ng mL−1, 1.0-500 U mL−1 and 3.0-500 U mL−1 with limits of detection of 0.68 ng mL−1, 0.95 ng mL−1, 0.99 U mL−1 and 2.30 U mL−1 at 3σ, respectively. The proposed array showed acceptable accuracy, detection reproducibility, storage stability and the results obtained were in acceptable agreement with those from parallel single-analyte test of practical clinical sera. This technique provides a new strategy for low cost, automated, and simultaneous multiplex immunoassay.  相似文献   

8.
A simple, selective, sensitive and inexpensive method of hollow fiber-based liquid–liquid–liquid microextraction (HF-LLLME) combined with high performance liquid chromatography (HPLC)-ultraviolet (UV) detection was developed for the determination of four acidic phytohormones (salicylic acid (SA), indole-3-acetic acid (IAA), (±) abscisic acid (ABA) and (±) jasmonic acid (JA)) in natural coconut juice. To the best of our knowledge, this is the first report on the use of liquid phase microextraction (LPME) as a sample pretreatment technique for the simultaneous analysis of several phytohormones. Using phenetole to fill the pores of hollow fiber as the organic phase, 0.1 mol L−1 NaOH solution in the lumen of hollow fiber as the acceptor phase and 1 mol L−1 HCl as the donor phase, a simultaneous preconcentration of four target phytohormones was realized. The acceptor phase was finally withdrawn into the microsyringe and directly injected into HPLC for the separation and quantification of the target phytohormones. The factors affecting the extraction efficiency of four phytohormones by HF-LLLME were optimized with orthogonal design experiment, and the data was analyzed by Statistical Product and Service Solutions (SPSS) software. Under the optimized conditions, the enrichment factors for SA, IAA, ABA and JA were 243, 215, 52 and 48, with the detection limits (S/N = 3) of 4.6, 1.3, 0.9 ng mL−1 and 8.8 μg mL−1, respectively. The relative standard deviations (RSDs, n = 7) were 7.9, 4.9, 6.8% at 50 ng mL−1 level for SA, IAA, ABA and 8.4% at 500 μg mL−1 for JA, respectively. To evaluate the accuracy of the method, the developed method was applied for the simultaneous analysis of several phytohormones in five natural coconut juice samples, and the recoveries for the spiked samples were in the range of 88.3–119.1%.  相似文献   

9.
Two accurate, reliable, and highly sensitive spectrofluorimetric methods were developed for simultaneous determination of binary mixture gemfibrozil and rosiglitazone in human plasma without prior separation steps. The first method is based on synchronous fluorescence spectrometry using double scans. At Δλ = 27 nm, gemfibrozil yields detectable signal that is independent of the presence of rosiglitazone. Similarly, at Δλ = 120 nm the signal of rosiglitazone is not influenced by the presence of gemfibrozil. Signals at two wavelengths, 301 (Δλ = 27 nm) and 368 nm (Δλ = 120 nm) vary linearly with gemfibrozil and rosiglitazone concentrations over the range 100-700 ng mL−1 (for gemfibrozil) and 20-140 ng mL−1 (for rosiglitazone), respectively. The limits of detection (LOD) were 2.3 and 2.72 ng mL−1 for gemfibrozil and rosiglitazone, respectively. The second method is based on the technique of simultaneous equations (Vierodt's method), in which 258 nm was selected as the excitation wavelength. Two equations are constructed based on the fact that at (λEm2=302 nm of gemfibrozil) and (λEm2=369 nm of rosiglitazone) the fluorescence of the mixture is the sum of the individual fluorescence of gemfibrozil and rosiglitazone. The limits of detection (LOD) were 28.1 and 23.63 ng mL−1 for gemfibrozil and rosiglitazone, respectively. The proposed methods were successfully applied for the determination of the two compounds in synthetic mixtures and in human plasma with a good recovery.  相似文献   

10.
Brominated phenols 2- and 4-bromophenol (2-BP and 4-BP); 2,4- and 2,6-dibromophenol (2,4-DBP and 2,6-DBP) and 2,4,6-tribromophenol (2,4,6-TBP) have been identified as key flavor compounds found in seafoods. Depending on their concentrations, they were responsible for marine or ocean flavor (shrimp/crab/fish/sea salt-like) or for phenolic/iodine/iodoform-like off-flavor. In this work a new analytical methodology was developed to determine, simultaneously, such bromophenols in fish meats, based on reversed-phased high-performance liquid chromatographic separation (RP-HPLC). The separation of bromophenols was made onto a Lichrospher 100 RP-18 column using water:acetonitrile gradient at a flow rate of 1.0 mL min−1, using absorbance detection at 286 nm, were the 2-BP, 4-BP, 2,4- and 2,6-DBP show significant absorbtivity values and at 297 nm for 2,4,6-TBP. They were separated in 20 min with a good chromatographic resolution (Rs) for the isomeric compounds: 2- and 4-BP, Rs = 1.23; 2,4- and 2,6-DBP, Rs = 1.63. The calibration curves were linear in the bromophenols concentration range of 200.0-1000 ng mL−1. Under optimized conditions, the detection limit of the HPLC method was 127 ng mL−1 for 2-BP; 179 ng mL−1 for 4-BP; 89.0 ng mL−1 for 2,4-DBP; 269 ng mL−1 for 2,6-DBP and 232 ng mL−1 for 2,4,6-TBP. This method has been applied in determination of bromophenols, isolated by combined steam distillation-solvent extraction with 2 mL of pentane/diethyl ether (6:4), from Brazilian fishes samples, collected on the Atlantic coast of Bahia (13°01′S and 38°31′W), Brazil. The concentration range determined were 0.20 ng g−1 (2-BP) to 299 ng g−1 (2,4,6-TBP). The method proposed here is rapid and suitable for simultaneous quantification of simple bromophenols in fish meat. As long as we know, it is the first analytical methodology, using RP-HPLC/UV, which was developed to determine simple bromophenols in fish meat.  相似文献   

11.
Different second-order multivariate calibration algorithms, namely parallel factor analysis (PARAFAC), N-dimensional partial least-squares (N-PLS) and multivariate curve resolution-alternating least-squares (MCR-ALS) have been compared for the analysis of four fluoroquinolones in aqueous solutions, including some human urine samples (additional four fluoroquinolones were simultaneously determined by univariate calibration). Data were measured in a short time with a chromatographic system operating in the isocratic mode. The detection system consisted of a fast-scanning spectrofluorimeter, which allows one to obtain second-order data matrices containing the fluorescence intensity as a function of retention time and emission wavelength. The developed approach enabled us to determine eight analytes, some of them with overlapped profiles, without the necessity of applying an elution gradient, and thus significantly reducing both the experimental time and complexity. The study was employed for the discussion of the scopes of the applied second-order chemometric tools. The quality of the proposed technique coupled to each of the evaluated algorithms was assessed on the basis of the figures of merit for the determination of fluoroquinolones in the analyzed water and urine samples. Univariate calibration of four analytes led to limits of detection in the range 20–40 ng mL−1 and root mean square errors for the validation samples in the range 30–60 ng mL−1 (corresponding to relative prediction errors of 3–8%). The ranges for second-order multivariate calibration (using PARAFAC and N-PLS) of the remaining four analytes were: limit of detection, 2–8 ng mL−1, root mean square errors, 3–50 ng mL−1 and relative prediction errors, 1–5%.  相似文献   

12.
This study established a flow injection (FI) methodology for the determination of the total phenolic content in plant-derived beverages based on soluble manganese(IV) chemiluminescence (CL) detection. It was found that mixing polyphenols with acidic soluble manganese(IV) in the presence of formaldehyde evoked chemiluminescence. Based on this finding, a new FI-CL method was developed for the estimation of the total content of phenolic compounds (expressed as milligrams of gallic acid equivalent per litre of drink) in a variety of wine, tea and fruit juice samples. The proposed method is sensitive with a detection limit of 0.02 ng mL−1 (gallic acid), offers a wide linear dynamic range (0.5-400 ng mL−1) and high sample throughput (247 samples h−1). The relative standard deviation for 15 measurements was 3.8% for 2 ng mL−1 and 0.45% for 10 ng mL−1 of gallic acid. Analysis of 36 different samples showed that the results obtained by the proposed FI-CL method correlate highly with those obtained by spectrophotometric methods commonly used for the evaluation of the total phenolic/antioxidant level. However, the FI-CL method was found to be far simpler, more rapid and selective, with almost no interference from non-phenolic components of the samples examined.  相似文献   

13.
The partial least squares (PLS-1) calibration model based on spectrophotometric measurement, for the simultaneous determination of CN and SCN ions is described. The method is based on the difference in the rate of the reaction between CN and SCN ions with chloramine-T in a pH 4.0 buffer solution and at 30 °C. The produced cyanogen chloride (CNCl) reacts with pyridine and the product condenses with barbituric acid and forms a final colored product. The absorption kinetic profiles of the solutions were monitored by measuring absorbance at 578 nm in the time range 20-180 s after initiation of the reaction with 2 s intervals. The experimental calibration matrix for partial least squares (PLS-1) calibration was designed with 31 samples. The cross-validation method was used for selecting the number of factors. The results showed that simultaneous determination could be performed in the range 10.0-900.0 and 50.0-1200.0 ng mL−1 for CN and SCN ions, respectively. The proposed method was successfully applied to the simultaneous determination of cyanide and thiocyanate in water samples.  相似文献   

14.
K. Isaac-Olive  A. Chatt 《Talanta》2008,77(2):827-832
Iodine is an essential trace element for human beings. The main source of iodine is generally food items such as fish and milk. Either the lack or the excess of iodine can cause health problems. There exists an increasing interest in the determination of total iodine as well as various species of iodine in milk. We have developed an epithermal neutron activation analysis method with a Compton suppression (ENAA-CS) counting system for the determination of ng mL−1 levels of iodine. We have also employed chemical separation methods prior to ENAA-CS to measure the fraction-specific concentrations of iodine in bovine milk. We have measured the following iodine concentrations in homogenized milk (3.25%milk fat): 0.48 ± 0.02 μg mL−1 of total iodine, 0.020 ± 0.003 μg mL−1 of lipid-bound iodine, 0.039 ± 0.002, 0.019 ± 0.002 and 0.021 ± 0.004 μg mL−1 of protein-bound iodine depending on the protein separation method and 0.45 ± 0.02 μg mL−1 of inorganic species.  相似文献   

15.
Although there are a number of existing assays for monitoring the activity of both isopenicillin N synthase (IPNS) and deacetoxycephalosporin C synthase (DAOCS), none have demonstrated the qualities required for screening a mutant library. Hence, enzyme-linked immunosorbent assays (ELISAs) for IPNS and DAOCS were developed based on the detection of the catalytic turnover products isopenicillin N and cephalexin/phenylacetyl-7-aminodeacetoxycephalosporanic acid (G-7-ADCA), respectively. These assays are relatively fast compared to existing assays, such as the hole-plate bioassay, and are amenable with high-throughput screening. Both the IPNS and DAOCS-ELISAs were optimised for use with crude protein extracts rather than purified protein, thereby eliminating any additional time required for purification. The ELISA developed for the detection of cephalexin had an IC50 value of 154 ± 9 ng mL−1 and LOD of 7.2 ± 2.2 ng mL−1 under conditions required for the assay. Good recoveries and correlation was observed for spiked samples when the concentration of crude protein was kept below 1 mg mL−1. The DAOCS-ELISA was found to have increased sensitivity compared to the hole-plate bioassay (10.3 μg mL−1). The IPNS-ELISA did not significantly increase the sensitivity (approximately 5 μg mL−1) compared to that of the hole-plate bioassay (16 μg mL−1) for isopenicillin N. The minimum amount of crude protein extract required for producing detectable amounts of product for both assays was below 0.5% of the maximum amount of protein that the assay could contain without any effect on the ELISA. This suggests that when screening a mutant library, mutants producing low amounts of the product could still be detected using these assays.  相似文献   

16.
A new micelle-mediated extraction method for preconcentration of ultra-trace quantities of beryllium and aluminum as a prior step to their simultaneous spectrophotometric determination has been developed. Chrome Azurol S (CAS), cetyltrimethylammonium bromide (CTAB) and Triton X-114 were used as chelating agent, cationic surfactant for extraction and co-extraction agent, respectively. Mean centering (MC) of ratio spectra has been used for simultaneous analysis of beryllium and aluminum. The optimal extraction and reaction conditions were studied, and the analytical characteristics of the method (e.g., limit of detection, linear range, preconcentration, and improvement factors) were obtained. Linearity was obeyed in the range of 5-40 ng mL−1 of beryllium and 3-100 ng mL−1 of aluminum. The detection limit of the method is 0.98 and 0.52 ng mL−1 for beryllium and aluminum, respectively. The interference effect of some anions and cations was also tested. The method was applied to the simultaneous determination of beryllium in water samples.  相似文献   

17.
It is critical to develop a cost-effective quantitative/semiquantitative assay for rapid diagnosis and on-site detection of toxic or harmful substances. Here, a naked-eye based semiquantitative immunochromatographic strip (NSI-strip) was developed, on which three test lines (TLs, TL-I, TL-II and TL-III) were dispensed on a nitrocellulose membrane to form the test zone. Similar as the traditional strip assay for small molecule, the NSI-strip assay was also based on the competitive theory, difference was that the analyte competed three times with the capture reagent for the limited number of antibody binding sites. After the assay, the number of TLs developed in the test zone was inversely proportional to the analyte concentration, thus analyte content levels could be determined by observing the appeared number of TLs. Taking aflatoxin B1 as the model analyte, visual detection limit of the NSI-strip was 0.06 ng mL−1 and threshold concentrations for TL-I–III were 0.125, 0.5, and 2.0 ng mL−1, respectively. Therefore, according to the appeared number of TLs, the following concentration ranges would be detectable by visual examination: 0–0.06 ng mL−1 (negative samples), and 0.06–0.125 ng mL−1, 0.125–0.5 ng mL−1, 0.5–2.0 ng mL−1 and >2.0 ng mL−1 (positive samples). That was to say, compared to traditional strips the NSI-strip could offer more parameter information of the target analyte content. In this way, the NSI-strip improved the qualitative presence/absence detection of traditional strips by measuring the content (range) of target analytes semiquantitatively.  相似文献   

18.
Two liquid-phase microextraction procedures: single-drop microextraction (SDME) and dispersive liquid-liquid microextraction (DLLME), have been developed for the determination of several endocrine-disrupting phenols (EDPs) in seawaters, in combination with high-performance liquid chromatography (HPLC) with UV detection. The EDPs studied were bisphenol-A, 4-cumylphenol, 4-tertbutylphenol, 4-octylphenol and 4-n-nonylphenol. The optimized SDME method used 2.5 μL of decanol suspended at the tip of a micro-syringe immersed in 5 mL of seawater sample, and 60 min for the extraction time. The performance of the SDME is characterized for average relative recoveries of 102 ± 11%, precision values (RSD) < 9.4% (spiked level of 50 ng mL−1), and detection limits between 4 and 9 ng mL−1. The optimized DLLME method used 150 μL of a mixture acetonitrile:decanol (ratio 15.7, v/v), which is quickly added to 5 mL of seawater sample, then subjected to vortex during 4 min and centrifuged at 2000 rpm for another 5 min. The performance of the DLLME is characterized for average relative recoveries of 98.7 ± 3.7%, precision values (RSD) < 7.2% (spiked level of 20 ng mL−1), and detection limits between 0.2 and 1.6 ng mL−1. The efficiencies of both methods have also been compared with spiked real seawater samples. The DLLME method has shown to be a more efficient approach for the determination of EDPs in seawater matrices, presenting enrichment factors ranging from 123 to 275, average relative recoveries of 110 ± 11%, and precision values (RSD) < 14%, when using a real seawaters (spiked level of 3.5 ng mL−1).  相似文献   

19.
Organophosphate triesters are common flame retardants used in a wide variety of consumer products from which they can migrate and pollute the indoor environment. Humans may thus be continuously exposed to several organophosphate triesters which might be a risk for human health. An analytical method based on direct injection of 5 μL urine into an ultra performance liquid chromatography system coupled to a time-of-flight mass spectrometry has been developed and validated to monitor exposure to organophosphate triesters through their respective dialkyl and diaryl phosphate metabolites (DAPs). The targeted analytes were: di-n-butyl phosphate (DNBP), diphenyl phosphate (DPHP), bis(2-butoxyethyl) phosphate (BBOEP), bis(2-chloroethyl) phosphate (BCEP), bis(1-chloro-2-propyl) phosphate (BCPP) and bis(1,3-dichloro-2-propyl) phosphate (BDCIPP). Separation was achieved in less than 3 min on a short column with narrow diameter and small particle size (50 mm × 2.1 mm × 1.7 μm). Different mobile phases were explored to obtain optimal sensitivity. Acetonitrile/water buffered with 5 mM of ammonium hydroxide/ammonium formate (pH 9.2) was the preferred mobile phase. Quantification of DAPs was performed using deuterated analogues as internal standards in synthetic urine (averaged DAP accuracy was 101%; RSD 3%). Low method limits of quantification (MLQ) were obtained for DNBP (0.40 ng mL−1), DPHP (0.10 ng mL−1), BDCIPP (0.40 ng mL−1) and BBOEP (0.60 ng mL−1), but not for the most polar DAPs, BCEP (∼12 ng mL−1) and BCPP (∼25 ng mL−1). The feasibility of the method was tested on 84 morning urine samples from 42 mother and child pairs. Only DPHP was found above the MLQ in the urine samples with geometric mean (GM) concentrations of 1.1 ng mL−1 and 0.57 ng mL−1 for mothers and children respectively. BDCIPP was however, detected above the method limit of detection (MLD) with GM of 0.13 ng mL−1 and 0.20 ng mL−1. While occasionally detected, the GM of DNBP and BBOEP were below MLD in both groups.  相似文献   

20.
In this work, a sandwich-type electrochemical immunosensor for simultaneous sensitive detection of prostate specific antigen (PSA) and free prostate specific antigen (fPSA) is fabricated. Gold nanoparticles (AuNPs) modified Prussian blue and nickel hexacyanoferrates nanoparticles were firstly prepared, respectively, and then decorated onion-like mesoporous graphene sheets (denoted as Au@PBNPs/O-GS and Au@NiNPs/O-GS) as distinguishable signal tags to label different detection antibodies. Subsequently, streptavidin and biotinylated alkaline phosphatase (bio-AP) were employed to block the possible remaining active sites. With the employment of the as prepared nanohybrids, the dual catalysis amplification can be achieved by catalysis of the ascorbic acid 2-phosphate to in situ produce AA in the presence of bio-AP, and then AA was further catalyzed by Au@PBNPs/O-GS and Au@NiNPs/O-GS nanohybrids, respectively, to obtain the higher signal responses. The experiment results show that the linear range of the proposed immunosensor for simultaneous determination of fPSA is from 0.02 to 10 ng mL−1 with a detection limit of 6.7 pg mL−1 and PSA is from 0.01 to 50 ng mL−1 with a detection limit of 3.4 pg mL−1 (S/N = 3). Importantly, the proposed method offers promise for rapid, simple and cost-effective analysis of biological samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号