首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
讨论了原子荧光光度计从传统的间歇式或流动注射式操作到与毛细管电泳联用技术的转化.考察了不同接口对分离的影响,优化了氢化物发生所用的气液分离器及原子荧光光度计的原子化器.通过缩短连路和改变管路内径等方式消除了体系的反压.将优化的仪器条件应用于As的形态分析,结果令人满意.  相似文献   

2.
Speciation of trace elements is a relatively new field and it was in toxicology that the relationship between the chemical form of a metal and its harmful effects was first recognized. The present need for chemical speciation information in biochemistry bioinorganic and clinical chemistry is documented in an attempt to justify the present demand for innovative chemical speciation strategies and analytical technologies.The challenge and complexity of speciation is stressed and three different categories of analytical speciation of increasing analytical difficulty are proposed. Analytical strategies developed so far to try to tackle speciation problems (computational approaches, direct species-specific and hybrid techniques) are reviewed and critically assessed for biological materials. It is indisputable these days that in most cases of real-life analytical speciation we have to resort to the development and use of hybrid techniques combining an adequate separation technique for the species physical separation and an element specific detector such as those based in atomic spectrometry. Examples of such strategies, as developed mainly in the author's laboratory and including chromatographic and non-chromatographic type hybrid strategies coupled to flame, plasma and electrothermal vaporization atomic detectors, are discussed in more detail.Finally, in light of the latest trends observed in this new field, the author attempts to cast a forward look into the foreseeable future of analytical speciation research in biological and biomedical sciences. The urgent plea for quality assurance in non-routine analysis and the concept of using complementary analytical techniques and definitive methods to attack the complexity of chemical speciation in biological systems are particularly highlighted.  相似文献   

3.
Capelo JL  Fernandez C  Pedras B  Santos P  Gonzalez P  Vaz C 《Talanta》2006,68(5):1442-1447
The field of selenium speciation has been studied for decades and the growing interest in this field seems never to reach a plateau. Although powerful techniques based on mass spectrometry are nowadays used for selenium determination/speciation, few laboratories can support the high cost of such techniques. The hyphenation of chromatography to atomic absorption or atomic fluorescence spectrometry (AAS or AFS) is still a reliable and low-cost alternative for routine laboratories. In this work we present the most important parameters dealing with selenium speciation along with the latest trends in this subject, namely in the items related with sample treatment and hyphenation techniques with AAS and AFS detection.  相似文献   

4.
A hyphenated technique was developed for high-throughput speciation analysis by on-line coupling of flow injection (FI), miniaturized capillary electrophoresis (CE) and atomic fluorescence spectrometry (AFS). Two interfaces were used to couple all three systems: the first to couple FI and CE and the second to couple miniaturized CE and AFS. The first interface was a modified flow through chamber, connected to the FI valve with a piece of PTFE tube (0.1mm i.d.x 20 cm long). The capillary outlet was coupled to the AFS by using the second concentric "tube-in-tube" interface. Split sampling was achieved in the electrokinetic mode. Inorganic mercury (Hg(II)) and methylmercury (MeHg(I)) were taken as model analytes to demonstrate the performance of the developed hyphenated technique. A volatile species generation (VSG) technique was employed to convert the analytes from the CE effluent into their respective volatile species. Baseline separation of Hg(II) and MeHg(I) was achieved by CE in a 50 microm i.d.x 8 cm long capillary at 3.0 kV within 60s. The precisions (RSD, n=12) were in the range of 0.7-0.9% for migration time, 3.8-4.2% for peak area, and 2.1-3.5% for peak height. The detection limits were 0.1 and 0.2 microgmL(-1) (as Hg) for Hg(II) and MeHg(I) with a sample throughput of 60 samples h(-1). The recoveries of both mercury species in the water samples studied were in the range of 93-106%.  相似文献   

5.
For the last 30 years, several types of gas-phase sample-introduction methods in analytical atomic spectrometry, i.e., atomic absorption spectrometry (AAS), atomic emission spectrometry (AES) and atomic fluorescence spectrometry (AFS), have been investigated and developed in the author's laboratory. Their fundamental results are summarized in this review article. The gas-phase sample-introduction techniques developed in the author's laboratory can be roughly divided into four groups: i) hydride generation, ii) cold-vapor generation of mercury, iii) analyte volatilization reactions and iv) miscellaneous. The analytical figures of merit of the gas-phase sample-introduction methods have been described in detail. Hydride generation has been coupled with the AAS of As, Bi, Ge, Pb, Sb, Se, Sn and Te, with the inductively coupled plasma (ICP) AES of As, Bi, Sn, Se and Sb, with the high-power nitrogen microwave-induced plasma (N2-MIP) AES of As, Bi, Pb, Sb, Se, Sn and Te by their single- and multi-element determinations, with the AFS of As, Bi, Pb, Sb, Se, Sn and Te, and with the ICP mass spectrometry (MS) of As and Se. The cold-vapor generation method for Hg has been combined with atmospheric-pressure helium microwave-induced plasma (He- or Ar-MIP)-AES and AFS. Furthermore, analyte volatilization reactions have been employed in the ICP-AES of iodine, in the He-MIP-AES of iodine bromine, chlorine, sulfur and carbon, and in the ICP-MS of sulfur. As a result, when compared with conventional solution nebulization, a great improvement in the sensitivity has been attained in each instance. In addition, the developed techniques coupled with analytical atomic spectrometry have been successfully applied to the determination of trace elements in a variety of practical samples.  相似文献   

6.
Mercury speciation by CE: a review   总被引:2,自引:0,他引:2  
CE methods for the speciation of inorganic and organomercury compounds are reviewed. Sample preparation, separation conditions and detection modes are discussed. Efficient separation and sensitive determination of mercury species by CE typically involves complexation with various thiols, chromogenic and other chelating agents; however, some methods do not require complexation. Spectrophotometric detection based on UV-visible absorption is by far the most commonly used. Hyphenated techniques, such as CE/inductively coupled plasma (ICP)-MS, hydride generation coupled to ICP-MS or atomic fluorescence spectrometry and CE/atomic absorption spectrometry are gaining popularity due to their high sensitivity and selectivity. Last, but not least, the potential and applications of electrochemical methods for detection of separated mercury species are outlined.  相似文献   

7.
铊是一种剧毒的蓄积性重金属元素。伴随着含铊矿物资源的开发利用,铊向环境中的迁移已不容忽视,环境铊污染事件时有发生。铊的分析技术对铊污染的防治具有重要意义。环境领域铊的分析技术近年来也有了新的发展。重点对环境水体、土壤、大气中铊元素分析技术的近期发展进行了综述。在电感耦合等离子体-质谱(ICP-MS)、石墨炉原子吸收光谱(GF-AAS)法为主流分析手段的同时,随着铊新型富集技术的应用以及仪器性能的提升,环境铊分析技术呈现出高灵敏、高稳定性的趋势。针对环境领域铊元素分析技术的发展,提出环境样品铊的化学及赋存形态分析、铊的在线监测、与铊高效富集技术的联用以及环境固体废物中铊的分析是其重要的发展方向。  相似文献   

8.
Progress made in the last five years in the application of capillary electrophoresis methods to chemical speciation of elements is reported on the basis of over 100 literature references. The main trends observed include development of new on‐ and off‐capillary derivatization methods, application of new detection methods, and especially coupling of CE separation systems to powerful atomic spectroscopy and mass spectrometry instruments with various ionization techniques, providing either a sensitive element‐specific detection method or a third dimension for high performance separation. Besides numerous CZE and MEKC capillary electrophoresis methods only very few examples of CE speciation with capillary electrochromatography can be found. Concerning the chemical forms of elements determined, the new procedures developed are mostly focused on redox speciation of various oxidation states of elements, metal‐bound high molecular compounds, and organometallic species.  相似文献   

9.
Metal-biomolecule interactions comprise an important research area in metallomics, and are significant for biology, medicine, pharmacy, nutrition, metabolism, and environmental science. Hybrid techniques are preferred for studying interactions between metals and biomolecules. Of all the separation techniques, capillary electrophoresis (CE) exhibits high resolution, minimal sample and reagent consumption, and rapid and efficient separations with minor disturbance of the existing equilibrium between the metal species and their biomolecular complexes. Inductively coupled plasma mass spectrometry (ICP-MS) presents high sensitivity to most of elements and offers multi-element detection.This article provides an overview of CE-ICP-MS for the study of metal-biomolecule interactions. We discuss applications of CE-ICP-MS to the study of interactions between metals or metalloids and natural ligands, such as humic substances or fulvic acids, and the interchange of metal complexes with metal species in metalloproteins.  相似文献   

10.
Ion chromatography (IC) and atomic spectrometry are sometimes rivalling and sometimes ideally cooperating techniques. The cooperating applications of the on-line coupling of IC and inductively coupled plasma–atomic emission spectroscopy or –mass spectrometry span from ultra trace analysis utilizing ion exchange as preconcentration technique via speciation applications taking advantage of the unique element specific detection offered by atomic spectroscopy until classical IC applications with atomic spectrometry as a sensitive and selective detector. Characteristics of this type of hyphenated technique are the simple physical coupling, the unique sensitivity for most elements and the superior selectivity obtainable for specific applications.  相似文献   

11.
Performances of two atomic detectors, Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and Atomic Fluorescence Spectrometry (AFS) have been compared for arsenic speciation in environmental samples. Instrumental couplings, based on the use of high performance liquid chromatography (HPLC), hydride generation (HG), and the two atomic detectors were used for the speciation of arsenite, arsenate, dimethylarsinic acid and monomethylarsonic acid. Optionally, arsenobetaine was also determined using on-line ultraviolet (UV) photooxidation. The detection limits ranging from 0.1 to 0.3 mug l(-1) (as As) and the precision >10% RSD obtained with HPLC-(UV)-HG-AFS were comparable with those obtained with HPLC-(UV)-HG-ICP-MS. Both instrumental coupling were applied to the NRCC-TORT-1 and several environmental samples, such as seawater, freshwater, sediments, bivalves and bird eggs, taken from two areas with different degrees of pollution. No influence of the sample matrix was observed on the results using external calibration and standard additions methods, for both coupled techniques.  相似文献   

12.
Miró M  Estela JM  Cerdà V 《Talanta》2004,63(2):201-223
In the earlier parts of this series of reviews [1] and [2], the most relevant flowing stream techniques (namely, segmented flow analysis, continuous flow analysis, flow injection (FI) analysis, sequential injection (SI) analysis, multicommuted flow injection analysis and multisyringe flow injection analysis) applied to the determination of several core inorganic parameters for water quality assessment, such as nutrients and anionic species including nitrogen, sulfur and halogen compounds, were described.In the present paper, flow techniques are presented as powerful analytical tools for the environmental monitoring of metal ions (alkaline and alkaline-earth metals, and elemental and harmful transition metals) as well as to perform both multielemental and speciation analysis in water samples. The potentials of flow techniques for automated sample treatment involving on-line analyte separation and/or pre-concentration are also discussed in the body of the text, and demonstrated for each individual ion with a variety of strategies successfully applied to trace analysis. In this context, the coupling of flow methodologies with atomic spectrometric techniques such as flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ETAAS), inductively coupled plasma mass spectrometry (ICPMS) or hydride-generation (HG)/cold-vapor (CV) approaches, launching the so-called hyphenated techniques, is specially worth mentioning.  相似文献   

13.
Arsenic speciation analysis   总被引:2,自引:0,他引:2  
Gong Z  Lu X  Ma M  Watt C  Le XC 《Talanta》2002,58(1):77-96
Nearly two dozen arsenic species are present in the environmental and biological systems. Differences in their toxicity, biochemical and environmental behaviors require the determination of these individual arsenic species. Considerable analytical progresses have been made toward arsenic speciation analysis over the last decade. Hyphenated techniques involving a highly efficient separation and a highly sensitive detection have become the techniques of choice. Methods based on high-performance liquid chromatography separation with inductively coupled plasma mass spectrometry, hydride generation atomic spectrometry, and electrospray mass spectrometry detection have been shown most useful for arsenic speciation in environmental and biological matrices. These hyphenated techniques have resulted in the determination of new arsenic species, contributing to a better understanding of arsenic metabolism and biogeochemical cycling. Methods for extracting arsenic species from solid samples and for stabilizing arsenic species in solutions are required for obtaining reliable arsenic speciation information.  相似文献   

14.
As a result of microbiological activity it is possible to find dimethylselenium (DMSe) and dimethyldiselenium (DMDSe) in a wide type of environmental samples, such as soils, sediments, sewage sludges and plants where methylation can take place.Selenium determination by hydride-generation (HG) techniques requires its presence as Se(IV). Consequently, inorganic speciation by hydride generation techniques is done by first determining Se(IV) and then, after reduction of Se (VI) to Se(IV), the total selenium. Therefore, the concentration of Se (VI) is evaluated as the difference between total inorganic selenium and Se(IV). In the present work it could be demonstrated that DMSe and DMDSe are forming other volatile species by reaction with sodium borohydride, applying the same reduction condition as for inorganic selenium. These species are subsequently detected by several atomic techniques (atomic absorption AAS, atomic fluorescence AFS and inductively coupled plasma-mass spectrometry ICP-MS). The error that their presence can cause in determination of inorganic selenium has been evaluated. The magnitude of this error depends on the specific analytical detector used.The coupling of pervaporation-atomic fluorescence is proposed for the identification of these species and pervaporation-gas chromatography-atomic fluorescence for their individual quantification.  相似文献   

15.
Vanadium is recognized worldwide as the most abundant metallic constituent in petroleum. It is causing undesired side effects in the refining process, and corrosion in oil-fired power plants. Consequently, it is the most widely determined metal in petroleum and its derivatives. This paper offers a critical review of analytical methods based on atomic spectrometric techniques, particularly flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ET AAS), inductively coupled plasma optical emission spectrometry (ICP OES), inductively coupled plasma mass spectrometry (ICP-MS). In addition an overview is provided of the sample pretreatment and preparation procedures for vanadium determination in petroleum and petroleum products. Also included are the most recent studies about speciation and fractionation analysis using atomic spectrometric techniques.  相似文献   

16.
Within the last decade, liquid-phase microextraction (LPME) and micro-solid phase extraction (μSPE) approaches have emerged as substitutes for conventional sample processing procedures for trace metal assays within the framework of green chemistry. This review surveys the progress of the state of the art in simplification and automation of microextraction approaches by harnessing to the various generations of flow injection (FI) as a front end to atomic absorption spectrometry (AAS), atomic fluorescence spectrometry (AFS) or inductively coupled plasma atomic emission spectrometry or mass spectrometry (ICP-AES/MS). It highlights the evolution of flow injection analysis and related techniques as vehicles for appropriate sample presentation to the detector and expedient on-line matrix separation and pre-concentration of trace levels of metals in troublesome matrices. Rather than being comprehensive this review is aimed at outlining the pros and cons via representative examples of recent attempts in automating green sample preparation procedures in an FI or sequential injection (SI) mode capitalizing on single-drop microextraction, dispersive liquid-phase microextraction and advanced sorptive materials including carbon and metal oxide nanoparticles, ion imprinted polymers, superparamagnetic nanomaterials and biological/biomass sorbents. Current challenges in the field are identified and the synergetic combination of flow analysis, nanotechnology and metal-tagged biomolecule detection is envisaged.  相似文献   

17.
硒的化学形态分析   总被引:1,自引:0,他引:1  
对硒的化学形态分析的现状(1991-2006)进行了评述,主要涉及的分析方法有紫外-可见分光光度法、荧光光度法、氢化物发生(HG)原子荧光光谱法、HG原子吸收光谱法、电感耦合等离子体(ICP)原子发射光谱、气相色译原子吸收光谱联用、ICP-质谱与多种分析技术联用等(引用文献45篇).  相似文献   

18.
原子光谱分析中气体挥发进样和固体进样技术进展   总被引:2,自引:0,他引:2  
  相似文献   

19.
The importance of mass spectrometry for the analysis of biological material is illustrated by reviewing the different mass spectrometric methods applied and describing some typical applications published recently. Though atomic absorption spectrometry is used in the majority of analyses of biological material, most mass spectrometric methods have been used to some extent for trace element determination in biomedical research. The relative importance of the different methods is estimated by reviewing recent research papers. It is striking that especially inductively coupled plasma mass spectrometry is increasingly being applied, partly because the method can be used on-line after chromatographic separation, in speciation studies. Mass spectrometric methods prove to offer unique possibilities in stable isotope tracer studies and for this purpose also experimentally demanding methods such as thermal ionization mass spectrometry and accelerator mass spectrometry are frequently used.  相似文献   

20.
Atomic fluorescence spectrometry (AFS) minimizes spectral overlap interference, often occurring in atomic emission spectrometry especially for such elements as rare earth elements (REEs). It has broader linear dynamic range than atomic absorption spectrometry, and is potentially a multi-element technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号