首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 932 毫秒
1.
In this paper a two-dimensional trim-loss problem connected to the paper-converting industry is considered. The problem is to produce a set of product paper rolls from larger raw paper rolls such that the cost for waste and the cutting time is minimized. The problem is generally non-convex due to a bilinear objective function and some bilinear constraints, which give rise to difficulties in finding efficient numerical procedures for the solution. The problem can, however, be solved as a two-step procedure, where the latter step is a mixed integer linear programming (MILP) problem. In the present formulation, both the width and length of the raw paper rolls as well as the lengths of the product paper rolls are considered variables. All feasible cutting patterns are included in the problem and global optimal cutting patterns are obtained as the solution from the corresponding MILP problem. A numerical example is included to illustrate the proposed procedure.  相似文献   

2.
We investigate the one-dimensional cutting-stock problem integrated with the lot-sizing problem in the context of paper industries. The production process in paper mill industries consists of producing raw materials characterized by rolls of paper and cutting them into smaller rolls according to customer requirements. Typically, both problems are dealt with in sequence, but if the decisions concerning the cutting patterns and the production of rolls are made together, it can result in better resource management. We investigate Dantzig–Wolfe decompositions and develop column generation techniques to obtain upper and lower bounds for the integrated problem. First, we analyze the classical column generation method for the cutting-stock problem embedded in the integrated problem. Second, we propose the machine decomposition that is compared with the classical period decomposition for the lot-sizing problem. The machine decomposition model and the period decomposition model provide the same lower bound, which is recognized as being better than the linear relaxation of the classical lot-sizing model. To obtain feasible solutions, a rounding heuristic is applied after the column generation method. In addition, we propose a method that combines an adaptive large neighborhood search and column generation method, which is performed on the machine decomposition model. We carried out computational experiments on instances from the literature and on instances adapted from real-world data. The rounding heuristic applied to the first column generation method and the adaptive large neighborhood search combined with the column generation method are efficient and competitive.  相似文献   

3.
The design and use of flexible manufacturing systems (FMSs) involve some intricate operations research problems.FMS design problems include, for example, determining the appropriate number of machine tools of each type, the capacity of the material handling system, and the size of buffers.FMS planning problems include the determination of which parts should be simultaneously machined, the optimal partition of machine tools into groups, allocations of pallets and fixtures to part types, and the assignment of operations and associated cutting tools among the limited-capacity tool magazines of the machine tools.FMS scheduling problems include determining the optimal input sequence of parts and an optimal sequence at each machine tool given the current part mix.FMS control problems are those concerned with, for example, monitoring the system to be sure that requirements and due dates are being met and that unreliability problems are taken care of. This paper defines and describes these FMS problems in detail for OR/MS researchers to work on.  相似文献   

4.
Most papers in scheduling research have treated individual job processing times as fixed parameters. However, in many practical situations, a manager may control processing time by realloeating resources. In this paper, authors consider a machine scheduling problemwith controllable processing times. In the first part of this paper, a special case where the pro-cessing times and compression costs are uniform among jobs is discussed. Theoretical results are derived that aid in developing an O(n^2) algorithm to slove the problem optimally. In the second part of this paper, authors generalize the discussion to general case, An effective heuristic to the genera/ problem will be presented.  相似文献   

5.
Operations research games: A survey   总被引:1,自引:0,他引:1  
This paper surveys the research area of cooperative games associated with several types of operations research problems in which various decision makers (players) are involved. Cooperating players not only face a joint optimisation problem in trying, e.g., to minimise total joint costs, but also face an additional allocation problem in how to distribute these joint costs back to the individual players. This interplay between optimisation and allocation is the main subject of the area of operations research games. It is surveyed on the basis of a distinction between the nature of the underlying optimisation problem: connection, routing, scheduling, production and inventory.  相似文献   

6.
Corrugated paper is produced by gluing three types of papers of the same breadth. Given a set of orders, we first assign each order to one of the standard breadths, and then sequence those assigned to each standard breadth so that they are continuously manufactured from the three rolls of the specified standard breadth equipped in the machine called corrugator. Here we are asked to achieve multi-goals of minimizing total length of roll papers, total loss of papers caused by the differences between standard breadths and real breadths of the orders, and the number of machine stops needed during production. We use integer programming to assign orders to standard breadths, and then develop a special purpose algorithm to sequence the orders assigned to each standard breadth. This is a first attempt to handle scheduling problems of the corrugator machine.  相似文献   

7.
Production scheduling and maintenance planning are two interdependent issues that most often have been investigated independently. Although both preventive maintenance (PM) and minimal repair affect availability and failure rate of a machine, only a few researchers have considered this interdependency in the literature. Furthermore, most of the existing joint production and preventive maintenance scheduling methods assume that machine is available during the planning horizon and consider only a possible level for PM. In this research, an integrated model is proposed that coordinates preventive maintenance planning with single-machine scheduling to minimize the weighted completion time of jobs and maintenance cost, simultaneously. This paper not only considers multiple PM levels with different costs, times and reductions in the hazard rate of the machine, but also assumes that a machine failure may occur at any time. To illustrate the effectiveness of the suggested method, it is compared to two situations of no PM and a single PM level. Eventually, to tackle the suggested problem, multi-objective particle swarm optimization and non-dominated sorting genetic algorithm (NSGA-II) are employed and their parameters are tuned Furthermore, their performances are compared in terms of three metrics criteria.  相似文献   

8.
In this paper a scheduling problem that takes into consideration a phenomenoncalled ‘aging effect’ with reference to Computer Numerical Controldrilling or cutting machines is investigated. In the aftermath of this effect anexecution of jobs leads to a deterioration of a machine; thus processing timesof jobs increase and the production facility becomes less efficient. However, itis highly desirable to minimize the negative influence of this effect. Ingeneral, it can be done by formulating such a problem in the scheduling contextand optimizing an order of jobs to minimize the given criterion. Therefore, onthis basis a makespan minimization problem on a single machine with releasedates and the aging effect is formulated, where the job processing times aredescribed by non-decreasing functions dependent on fatigue (wear) of machine. Itis proved that even the special cases of the problem are NP-hard. Moreover, someproblems equivalences are shown and polynomially solvable cases are alsoprovided.  相似文献   

9.
考虑了单机环境下,机器具有不同的生产时区费用,并且工件的加工是可以拒绝的排序问题.需要选择要加工的工件集合,对每个加工的工件指派相应的生产区间并排序,并支付拒绝加工工件的拒绝费用.对于排序理论中主要的四个目标函数,研究了单位区间的生产费用随着时间的推迟是单调非增的情况,分析了问题的复杂性,对于这些问题给出了它们的最优算法.  相似文献   

10.
The Compartmentalised Knapsack Problem (CKP) is similar to the ordinary Knapsack Problem except that items to be packed belong to separate classes, and items can only be packed, in knapsack compartments, amongst items in their own class. This paper addresses a case study in the cutting of steel rolls in which the CKP arises. The rolls are cut in two-phases: the first phase produces sub-rolls (compartments) which are, after reducing the thickness, cut in a second phase to produce ribbons (a class consists of ordered items with the same thickness). Finally, two methods of solving CKP are presented, and these are used to generate columns in the classical linear optimisation model of Gilmore and Gomory. Results of computational experiments are presented.  相似文献   

11.
The economic lot scheduling problem (ELSP) is a well known problem that focuses on scheduling the production of multiple items on a single machine such that inventory and setup costs are minimized. In this paper, we extend the ELSP to include price optimization with the objective to maximize profits. A solution approach based on column generation is provided and shown to produce very close to optimal results with short solution times on a set of test problems. The results are discussed and recommendations for further research are provided.  相似文献   

12.
In this study, we determine the upper and lower bounds for the processing time of each job under controllable machining conditions. The proposed bounding scheme is used to find a set of discrete efficient points on the efficient frontier for a bi-criteria scheduling problem on a single CNC machine. We have two objectives; minimizing the manufacturing cost (comprised of machining and tooling costs) and minimizing makespan. The technological restrictions of the CNC machine along with the job specific parameters affect the machining conditions; such as cutting speed and feed rate, which in turn specify the processing times and tool lives. Since it is well known that scheduling problems are extremely sensitive to processing time data, system resources can be utilized much more efficiently by selecting processing times appropriately.  相似文献   

13.
In a steel tube mill where an endless stream of steel tube is supplied from a manufacturing facility, trim waste is never made regardless of cutting patterns used and the standard cutting stock problem seems meaningless. Therefore, the continuous stock cutting problem with setup is introduced to minimize the sum of cutting time and pattern changing time to meet the given demand. We propose a new configuration of cutting machines to achieve higher production efficiency, namely the open-ended configuration as opposed to the traditional closed-ended configuration, thereby two variants of the problem are defined. We propose linear formulations for both problems using binary expansion of the number of pieces of different types in a pattern. Furthermore, we define the time for pattern change as a linear function of the number of knives used in the pattern to be more realistic. Computational studies suggest that the open-ended cutting machine may improve the production time by up to 44% and that our linear formulations are more efficient than the existing ones.  相似文献   

14.
In this work we consider a one-dimensional cutting stock problem in which the non-used material in the cutting patterns may be used in the future, if large enough. This feature introduces difficulties in comparing solutions of the cutting problem, for example, up to what extent a minimum leftover solution is the most interesting one when the leftover may be used. Some desirable characteristics of good solutions are defined and classical heuristic methods are modified, so that cutting patterns with undesirable leftover (not large enough to be used, nor too small to be acceptable waste) are redesigned. The performance of the modified heuristics is observed by solving instances from the literature, practical instances and randomly generated instances.  相似文献   

15.
In many production processes real time information may be obtained from process control computers and other monitoring systems, but most existing scheduling models are unable to use this information to effectively influence scheduling decisions in real time. In this paper we develop a general framework for using real time information to improve scheduling decisions, which allows us to trade off the quality of the revised schedule against the production disturbance which results from changing the planned schedule. We illustrate how our framework can be used to select a strategy for using real time information for a single machine scheduling model and discuss how it may be used to incorporate real time information into scheduling the complex production processes of steel continuous caster planning.  相似文献   

16.
In this paper, an integrated due date assignment and production and batch delivery scheduling problem for make-to-order production system and multiple customers is addressed. Consider a supply chain scheduling problem in which n orders (jobs) have to be scheduled on a single machine and delivered to K customers or to other machines for further processing in batches. A common due date is assigned to all the jobs of each customer and the number of jobs in delivery batches is constrained by the batch size. The objective is to minimize the sum of the total weighted number of tardy jobs, the total due date assignment costs and the total batch delivery costs. The problem is NP-hard. We formulate the problem as an Integer Programming (IP) model. Also, in this paper, a Heuristic Algorithm (HA) and a Branch and Bound (B&B) method for solving this problem are presented. Computational tests are used to demonstrate the efficiency of the developed methods.  相似文献   

17.
This paper addresses scheduling a set of jobs on a single machine for delivery in batches to customers or to other machines for further processing. The problem is a natural extension of minimizing the sum of flow times by considering the possibility of delivering jobs in batches and introducing batch delivery costs. The scheduling objective adopted is that of minimizing the sum of flow times and delivery costs. The extended problem arises in the context of coordination between machine scheduling and a distribution system in a supply chain network. Structural properties of the problem are investigated and used to devise a branch-and-bound solution scheme. Computational experiments show significant improvements over an existing dynamic programming algorithm.  相似文献   

18.
In this paper we introduce a new model of joint start-time dependent learning and position dependent aging effects into single-machine scheduling problems. The machine may need maintenance to improve its production efficiency. The objectives are to find jointly the optimal maintenance position and the optimal sequence such that the makespan, the total completion time, and the total absolute deviation of completion times (TADC) are minimized. We also aim to determine jointly the optimal maintenance position, the optimal due-window size and location, and the optimal sequence to minimize the sum of earliness, tardiness and due-window related costs function. We show that all the studied problems can be optimally solved by polynomial time algorithms.  相似文献   

19.
This paper addresses the simultaneous lotsizing and scheduling of several products on non-identical parallel production lines (heterogeneous machines). The limited capacity of the production lines may be further reduced by sequence dependent setup times. Deterministic, dynamic demand of standard products has to be met without back-logging with the objective of minimizing sequence dependent setup, holding and production costs.The problem is heuristically solved by combining the local search metastrategies threshold accepting (TA) and simulated annealing (SA), respectively, with dual reoptimization. Such a solution approach has already proved to be successful for the single machine case. The solution quality and computational performance of the new heuristics are tested by means of real-world problems gathered from industry.  相似文献   

20.
This paper addresses scheduling a set of jobs on a single machine for delivery in batches to one customer or to another machine for further processing. The problem is a natural extension of that of minimising the sum of weighted flow times, considering the possibility of delivering jobs in batches and introducing batch delivery costs. The scheduling objective adopted is that of minimising the sum of weighted flow times and delivery costs. The extended problem arises in the context of coordination between machine scheduling and a distribution system in a supply chain network. Structural properties of the problem are investigated and used to devise a branch-and-bound solution method. For the special case, when the maximum number of batches is fixed, the branch-and-bound scheme provided shows significant improvements over an existing dynamic-programming algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号