首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclobutane pyrimidine dimer (CPD) photolyase (PL) is a structure‐specific DNA repair enzyme that uses blue light to repair CPD on DNA. Cryptochrome (CRY) DASH enzymes use blue light for the repair of CPD lesions on single‐stranded (ss) DNA, although some may also repair these lesions on double‐stranded (ds) DNA. In addition, CRY DASH may be involved in blue light signaling, similar to cryptochromes. The focus of this review is on spectroscopic and biophysical‐chemical experiments of the enzyme–substrate complex that have contributed to a more detailed understanding of all the aspects of the CPD repair mechanism of CPD photolyase and CRY DASH. This will be performed in the backdrop of the available X‐ray crystal structures of these enzymes bound to a CPD‐like lesion. These structures helped to confirm conclusions that were drawn earlier from spectroscopic and biophysical‐chemical experiments, and they have a critical function as a framework to design new experiments and to interpret new experimental data. This review will show the important synergy between X‐ray crystallography and spectroscopic/biophysical‐chemical investigations that is essential to obtain a sufficiently detailed picture of the overall mechanism of CPD photolyases and CRY DASH proteins.  相似文献   

2.
Phytochromes, cryptochromes, phototropin: photoreceptor interactions in plants   总被引:19,自引:0,他引:19  
In higher plants, natural radiation simultaneously activates more than one photoreceptor. Five phytochromes (phyA through phyD), two cryptochromes (cry1, cry2) and phototropin have been identified in the model species Arabidopsis thaliana. There is light-dependent epistasis among certain photoreceptor genes because the action of one pigment can be affected by the activity of others. Under red light, phyA and phyB are antagonistic, but under far-red light, followed by brief red light, phyA and phyB are synergistic in the control of seedling morphology and the expression of some genes during de-etiolation. Under short photoperiods of red and blue light, cry1 and phyB are synergistic, but under continuous exposure to the same light field the actions of phyB and cry1 become independent and additive. Phototropic bending of the shoot toward unilateral blue light is mediated by phototropin, but cry1, cry2, phyA and phyB positively regulate the response. Finally, cry2 and phyB are antagonistic in the induction of flowering. At least some of these interactions are likely to result from cross talk of the photoreceptor signaling pathways and uncover new avenues to approach signal transduction. Experiments under natural radiation are beginning to show that the interactions create a phototransduction network with emergent properties. This provides a more robust system for light perception in plants.  相似文献   

3.
4.
In this review, we describe the regulation of photomovement responses by phototropin and phytochrome photoreceptors. The blue light receptor phototropin mediates various photomovement responses such as phototropism, chloroplast movement and stomatal opening. In cryptogamic plants including ferns, mosses and green alga, red as well as blue light mediates phototropism and chloroplast movement. The red/far-red light reversibility suggests the involvement of phytochrome in these responses. Thereby, plant growth is presumably promoted by coordinating these photomovements to capture efficiently light for photosynthesis.  相似文献   

5.
We investigated the relationship between the blue-light photoreceptor cryptochrome (CRY) and melatonin biosynthesis by generating RNA interference (RNAi) transgenic rice plants that suppress the cryptochrome 1b gene (CRY1b). The resulting CRY1b RNAi rice lines expressed less CRY1b mRNA, but not CRY1a or CRY2 mRNA, suggesting that the suppression is specific to CRY1b. The growth of CRY1b RNAi rice seedlings was enhanced under blue light compared to wild-type growth, providing phenotypic evidence for impaired CRY function. When these CRY1b RNAi rice plants were challenged with cadmium to induce melatonin, wild-type plants produced 100 ng/g fresh weight (FW) melatonin, whereas CRY1b RNAi lines produced 60 ng/g FW melatonin on average, indicating that melatonin biosynthesis requires the CRY photoreceptor. Due to possible feedback regulation, the expression of melatonin biosynthesis genes such as T5H, SNAT1, SNAT2, and COMT was elevated in the CRY1b RNAi lines compared to the wild-type plants. In addition, laminar angles decreased in the CRY1b RNAi lines via the suppression of brassinosteroid (BR) biosynthesis genes such as DWARF. The main cause of the BR decrease in the CRY1b RNAi lines seems to be the suppression of CRY rather than decreased melatonin because the melatonin decrease suppressed DWARF4 rather than DWARF.  相似文献   

6.
7.
In plants, ultraviolet-B radiation (280–315 nm) regulates gene expression and plant morphology through the UV RESPONSE LOCUS 8 (UVR8) photoreceptor. The first signaling event after quantal absorbance is the interaction of the UVR8 C-terminus with the E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1). The nature of the interaction between these two proteins is hitherto unknown. A protein homology model of the Arabidopsis thaliana COP1 seven-bladed propeller WD40 repeat domain and de novo folds of the C-terminal 27 amino acid (amino acids 397–423) peptide of Arabidopsis UVR8 (UVR8397?423) is herein reported. Using a theoretical computational docking protocol, the interaction between COP1 and UVR8 was predicted. A core motif was identified in UVR8397?423 comprising adjacent hydrophobic residues V410 and P411 together with a charged residue D412, homologous to corresponding motifs in other COP1-binding proteins, such as ELONGATED HYPOCOTYL 5 (HY5), cryptochrome 1 (CRY1), and salt tolerance proteins STO/STH. The protein–protein interaction between the COP1 WD40 repeat domain and UVR8397?423 reveals binding within a region of COP1 overlapping with the binding site for HY5 and the other COP1-interacting proteins. This study provides a framework for understanding docking between UVR8 and COP1, which in turn gives clues for experimental testing of UVR8/COP1 interaction.  相似文献   

8.
9.
10.
Cryptochromes are flavoproteins that exhibit high sequence and structural similarity to the light-dependent DNA-repair enzyme, photolyase. Cryptochromes have lost the ability to repair DNA; instead, they use the energy from near-UV/blue light to regulate a variety of growth and adaptive processes in organisms ranging from bacteria to humans. The photocycle of cryptochrome is not yet known, although it is hypothesized that it may share some similarity to that of photolyase, which utilizes light-driven electron transfer from the catalytic flavin chromophore. In this review, we present genetic evidence for the photoreceptive role of cryptochromes and discuss recent biochemical studies that have furthered our understanding of the cryptochrome photocycle. In particular, the role of the unique C-terminal domain in cryptochrome phototransduction is discussed.  相似文献   

11.
Plants have several kinds of photoreceptors, which regulate growth and development. Recent investigations using Arabidopsis thaliana revealed that the newly found blue light receptor phototropins mediate phototropism, chloroplast relocation, stomatal opening, rapid inhibition of hypocotyl elongation and leaf expansion. Several physiological studies suggest that one of the intermediates in phototropin signaling is cytosolic Ca2+. Studies using phototropin mutants have demonstrated that phototropins induce an increase in cytosolic Ca2+ concentration. However, the function of Ca2+ in the phototropin-mediated signaling process remains largely unknown. This review presents findings about phototropin-mediated calcium mobilization and the involvement of calcium in blue light-dependent plant responses.  相似文献   

12.
PHOTOMORPHOGENIC PROCESSES IN THE AGRICULTURAL ENVIRONMENT   总被引:1,自引:0,他引:1  
We review recent advances in our understanding of how photomorphogenic mechanisms influence processes of significance for agriculture, including weed seed germination, acclimation to solar UV-B radiation, and plant interactions in canopies. It has been demonstrated recently that seeds of some weed species acquire the ability to germinate in response to very low photon fluences during burial. Short sunlight pulses perceived by seeds during tillage appear to be important signals of soil disturbance. Regarding UV-B acclimation there is increasing evidence for the involvement of a specific UV-B photoreceptor in pigmentation and morphological responses to UV-B. The protective role played by UV-B-induced flavonoids has been experimentally demonstrated. Concerning plant interactions in canopies it has been shown that, by perceiving light signals through phytochrome and blue-UV-A photoreceptors, plants obtain information about the characteristics of the surrounding vegetation well before their resources are reduced as a consequence of neighbors' activities. There appears to be a large potential for improving cropping systems by manipulating the light environment or by changing the photomorphogenic behavior of crop plants. However, relatively little is known about how the expression and agronomic significance of photomorphogenic responses are influenced by other factors of the plant's environment.  相似文献   

13.
Cryptochrome (CRY), a blue light sensor protein, possesses a similar domain structure to photolyase (PHR) that, upon absorption of light, repairs DNA damage. In this review, we compare the reaction dynamics of these systems by monitoring the reaction kinetics of conformational change and intermolecular interaction change based on time‐dependent diffusion coefficient measurements obtained by using the pulsed laser‐induced transient grating technique. Using this method, time‐dependent biomolecular interactions, such as transient dissociation reactions in solution, have been successfully detected in real time. Conformational change in (6‐4) PHR has not been detected after the photoexcitation by monitoring the diffusion coefficient. However, the repaired DNA dissociates from PHR with a time constant of 50 μs, which must relate to a minor conformational change. However, CRY exhibits a considerable diffusion change with a time constant of 400 ms, which indicates that the protein–solvent interaction is changed by the conformational change. The C‐terminal domain of CRY is shown to be responsible for this change.  相似文献   

14.
Recent developments in phototropin biology have provided exciting new findings on the roles of these photoreceptor proteins in plants. Much of the recent work has focused on phototropin photochemistry and the structural alterations in both the chromophoric and peptide components of the molecule associated with light perception. In this review, specific aspects of phototropin action in higher plants will be discussed in the context of these new findings. Although, as their name suggests, phototropins play a key role in phototropic responses in plants, increasing evidence shows they have many other functions in plants. In this review, the roles of phototropins in additional plant "movement" responses will be addressed; in particular their roles in stomatal aperture control and chloroplast movements. In discussing these various movement responses special attention will be given to identified and hypothesized downstream signaling partners or events that enable the phototropins to selectively participate in any one or more of these responses in a given light condition.  相似文献   

15.
Phototropin is a blue-light photoreceptor in plants that mediates phototropism, chloroplast relocation, stomata opening and leaf expansion. Phototropin molecule has two photoreceptive domains named LOV1 (light-oxygen-voltage) and LOV2 in the N-terminus and a serine/threonine kinase domain in the C-terminus, and acts as a blue light-regulated kinase. Each LOV domain binds a flavin mononucleotide as a chromophore and undergoes unique cyclic reactions upon blue-light absorption that comprises a cysteinyl-flavin adduct formation through a triplet-excited state and a successive adduct break to revert to the initial ground state. The molecular reactions underlying the photocycle are reviewed and one of the probable molecular schemes is presented. Adduct formation alters the secondary protein structure of the LOV domains. This structural change could be transferred to the linker between the kinase domain and involved in the photoregulation of the kinase activity. The structural changes as well as the oligomeric structures seem to differ between LOV1 and LOV2, which may explain the proposed roles of each domain in the photoregulation of the kinase activity. The photoregulation mechanism of phototropin kinase is reviewed and discussed in reference to the regulation mechanism of protein kinase A, which it resembles.  相似文献   

16.
UVR8 is the only known plant photoreceptor that mediates light responses to UV‐B (280–315 nm) of the solar spectrum. UVR8 perceives a UV‐B signal via light‐induced dimer dissociation, which triggers a wide range of cellular responses involved in photomorphogenesis and photoprotection. Two recent crystal structures of Arabidopsis thaliana UVR8 (AtUVR8) have revealed unusual clustering of UV‐B‐absorbing Trp pigments at the dimer interface and provided a structural framework for further mechanistic investigation. This review summarizes recent advances in spectroscopic, computational and crystallographic studies on UVR8 that are directed toward full understanding of UV‐B perception at the molecular level.  相似文献   

17.
Cryptochromes are suggested to be involved in the bird magnetoreception based on the radical pair mechanism (RPM), a well established theory of weak magnetic field effects on chemical reactions. Two members of cryptochrome/photolyase family were found to respond to magnetic field, however, no direct responses of bird cryptochrome to magnetic field as weak as the Earth's magnetic field have been obtained so far. In this study, we used transient fluorescence spectroscopy to characterize the weak magnetic field effects of bird cryptochromes. To do this, we cloned the cryptochrome 1 gene (clCRY1) from the retina of homing pigeons (Columba livia), expressed it in insect Sf9 cells and analyzed the transient fluorescence of purified clCRY1 by application of 45–300 μT magnetic fields. The flavin adenine dinucleotide (FADox) and glucose oxidase (GOD) in PBS buffer were set as controls which could be excited by light to generate radicals, but would not be sensitive to magnetic field. We observed that the transient fluorescence spectra of clCRY1 were sensitive to the applied magnetic field at room temperature. Our result provides a new proof of the cryptochrome‐based model of avian magnetoreception in vitro.  相似文献   

18.
The knowledge on the mechanisms by which blue light (BL) is sensed by diverse and numerous organisms, and of the physiological responses elicited by the BL photoreceptors, has grown remarkably during the last two decades. The basis for this "blue revival" was set by the identification and molecular characterization of long sought plant BL sensors, employing flavins as chromophores, chiefly cryptochromes and phototropins. The latter photosensors are the foundation members of the so-called light, oxygen, voltage (LOV)-protein family, largely spread among archaea, bacteria, fungi and plants. The accumulation of sequenced microbial genomes during the last years has added the BLUF (Blue Light sensing Using FAD) family to the BL photoreceptors and yielded the opportunity for intense "genome mining," which has presented to us the intriguing wealth of BL sensing in prokaryotes. In this contribution we provide an update of flavin-based BL sensors of the LOV and BLUF type, from prokaryotic microorganisms, with special emphasis to their light-activation pathways and molecular signal-transduction mechanisms. Rather than being a fully comprehensive review, this research collects the most recent discoveries and aims to unveil and compare signaling pathways and mechanisms of BL sensors.  相似文献   

19.
Abstract— Problems concerning the interpretation of interactions of higher plant photomorphogenetic receptors are discussed. The theory that action of a blue light photoreceptor serves only to maintain responsiveness to phytochrome (Responsiveness Theory) is demonstrated to be unable to be properly tested with present techniques. This theory is also unable to explain experimental results any better than an alternative theory that a blue light photoreceptor may require the presence of the active form of phytochrome to express its activity (Presence Theory). This tatter theory is also incapable of being fully tested. There does not appear to be an adequate current theory to explain photoreceptor interactions. Other issues discussed include the use of displacement transducers in growth studies, the induction of phytochrome-type responses by blue light, and the relative importance of the photoreceptors. New data are introduced on the effect of blue light in the end-of-day growth response to phytochrome of the light-grown Cucumis sativus L. hypocotyl, and on the light equivalence principle in the same species.  相似文献   

20.
The mechanism of chemical transformations in the blue light photoreceptor domains (BLUF) implies the isomerization of the glutamine side chain. The Helmholtz energy profiles for the side-chain isomerization of the tautomeric form of glutamine in the BLUF domain of the bacterial protein AppA were calculated using metadynamics and the potentials that were obtained using quantum mechanics-molecular mechanics approximation (QM/MM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号