首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Palladium(II)-catalyzed oxidative reaction of tert-cyclobutanols involving the cleavage of a C-C bond via beta-carbon elimination under atmospheric pressure of oxygen is described. An alkylpalladium intermediate produced by beta-carbon elimination from a Pd(II) alcoholate gives a variety of products, depending on the substituents on the cyclobutane ring, in which reactions such as dehydrogenative ring opening, ring expansion and ring contraction are involved. For some substrates, the addition of a catalytic amount of ethyl acrylate dramatically accelerates the reaction. In all cases, the dehydrogenative products are obtained and the Pd(II)-hydride species produced at the final stage can be converted again to active Pd(II) species by molecular oxygen.  相似文献   

2.
[reaction: see text] Iridium-catalyzed ring cleavage reaction of cyclobutanone O-benzoyloximes in the presence of 9,10-dihydroanthracene and potassium carbonate proceeds to give saturated nitriles via C-C bond fission at the sterically more hindered site.  相似文献   

3.
Oxiranes undergo oxidative fragmentation when treated with hypervalent iodine(V) reagents particularly o-iodoxybenzoic acid in aqueous ammonia to give nitriles. The reaction goes via the formation of 1, 2-amino alcohols as intermediates followed by C-C bond cleavage.  相似文献   

4.
有机化合物中的碳碳单键断裂反应是一类非常重要而且具有挑战性的反应,过去的几十年中,关于有机腈类化合物中碳碳单键的催化断裂反应研究受到了很多的关注。而乙腈作为常用的有机溶剂之一,其分子是有机腈类中的最小分子。本文结合最近几年国内外及本课题组关于乙腈分子的碳碳单键活化断裂的研究,综述了各类过渡金属配合物催化乙腈分子碳碳单键断裂的研究进展,分析了当前存在的问题,提出了对今后研究的展望。  相似文献   

5.
陈慧晴  张坤  徐枫  黄伟 《无机化学学报》2013,29(11):2265-2275
有机化合物中的碳碳单键断裂反应是一类非常重要而且具有挑战性的反应,过去的几十年中,关于有机腈类化合物中碳碳单键的催化断裂反应研究受到了很多的关注。而乙腈作为常用的有机溶剂之一,其分子是有机腈类中的最小分子。本文结合最近几年国内外及本课题组关于乙腈分子的碳碳单键活化断裂的研究,综述了各类过渡金属配合物催化乙腈分子碳碳单键断裂的研究进展,分析了当前存在的问题,提出了对今后研究的展望。  相似文献   

6.
Jun CH  Moon CW  Lim SG  Lee H 《Organic letters》2002,4(9):1595-1597
[reaction: see text]. Herein described is the application of the Rh(I)-catalyzed C-H bond activation to the ring-opening of 2-cycloalkenones in the presence of cyclohexylamine. This reaction includes the C-C double bond cleavage of 2-cycloalkenones through the conjugate addition of cyclohexylamine followed by the retro-Mannich-type fragmentation. The resulting ring-opened intermediates subsequently underwent either chelation-assisted hydroacylation to afford a ring-opened dicarbonyl compound or beta-alkylation via a ring contraction.  相似文献   

7.
[reaction: see text] A variety of 3-enynyl substituted flavones/thioflavones were synthesized via a sequential one-pot procedure using copper-free palladium-catalyzed cross coupling in a simple synthetic operation. The cross coupling between 3-iodo(thio)flavone and a broad range of terminal alkynes was carried out in the presence of Pd(PPh3)2Cl2 and triethylamine to afford the corresponding 3-enynyl derivatives in a regio- and stereoselective fashion. The best results are obtained by employing 3 equiv of the terminal alkynes. The process worked well irrespective of the substituents present on the (thio)flavone ring as well as in the terminal alkynes except arylalkynes. The reaction is quite regioselective, placing the substituent of the terminal alkyne at the far end of the double bond attached with the (thio)flavone ring. The orientation of the (thio)flavonyl and acetylenic moieties across the double bond was found to be syn in the products isolated. A tandem C-C bond-forming reaction in the presence of palladium catalyst rationalized the formation of coupled product. The catalytic process apparently involves heteroarylpalladium formation, regioselective addition to the C-C triple bond of the terminal alkyne, and subsequent displacement of palladium by another mole of alkyne. The present methodology is useful for the introduction of an enynyl moiety at the C-3 position of flavones and thioflavone rings to afford novel compounds of potential biological interest. In the presence of CuI the process afforded 3-alkynyl (thio)flavones in good yields.  相似文献   

8.
Wei Xiao  Jie Wu 《中国化学快报》2021,31(12):3083-3094
Nitriles are widely existed in many bioactive compounds, and they can be easily transformed into other functional groups. Therefore, the synthesis of nitriles under cyanide-free conditions is of significant importance. Recent advances for the synthesis of nitriles through photoinduced C-C bond cleavage of cycloketone oximes classified by the type of C-X bond forming are summarized. Various compounds possessing nitriles can be efficiently accessed via this method.  相似文献   

9.
We have measured the initial probabilities of dissociative chemisorption of perhydrido and perdeutero cycloalkane isotopomers on the hexagonally close-packed Ru(001) and Ir(111) single-crystalline surfaces for surface temperatures between 250 and 1100 K. Kinetic parameters (activation barrier and preexponential factor) describing the initial, rate-limiting C-H or C-C bond cleavage reactions were quantified for each cycloalkane isotopomer on each surface. Determination of the dominant initial reaction mechanism as either initial C-C or C-H bond cleavage was judged by the presence or absence of a kinetic isotope effect between the activation barriers for each cycloalkane isotopomer pair, and also by comparison with other relevant alkane activation barriers. On the Ir(111) surface, the dissociative chemisorption of cyclobutane, cyclopentane, and cyclohexane occurs via two different reaction pathways: initial C-C bond cleavage dominates on Ir(111) at high temperature (T > approximately 600 K), while at low temperature (T < approximately 400 K), initial C-H bond cleavage dominates. On the Ru(001) surface, dissociative chemisorption of cyclopentane occurs via initial C-C bond cleavage over the entire temperature range studied, whereas dissociative chemisorption of both cyclohexane and cyclooctane occurs via initial C-H bond cleavage. Comparison of the cycloalkane C-C bond activation barriers measured here with those reported previously in the literature qualitatively suggests that the difference in ring-strain energies between the initial state and the transition state for ring-opening C-C bond cleavage effectively lowers or raises the activation barrier for dissociative chemisorption via C-C bond cleavage, depending on whether the transition state is less or more strained than the initial state. Moreover, steric arguments and metal-carbon bond strength arguments have been evoked to explain the observed trend of decreasing C-H bond activation barrier with decreasing cycloalkane ring size.  相似文献   

10.
The reaction of diaryl ketoalkynes with 1,2-diamino ethane leads to the full scission of the triple bond with the formation of acetophenone and imidazoline fragments. In this transformation, one of the alkyne carbons undergoes formal reduction with the formation of three C-H bonds, whereas the other carbon undergoes formal oxidation via the formation of three C-N bonds (one π and two σ). Computational analysis confirmed that the key fragmentation step proceeds via a six-membered TS in a concerted manner. Both amines are involved in the fragmentation: the N-H moiety of one amine transfers a proton to the developing negative charge at the enolate oxygen, while the other amine provides direct stereoelectronic assistance to the C-C bond cleavage via a hyperconjugative n(N) → σ*(C-C) interaction.  相似文献   

11.
The reaction of Betti bases with various heterocycles in the presence of p-toluenesulphonic acid (PTSA) under microwave irradiation gives bis(heterocycle)methanes through benzyl transfer. The reaction proceeds via the cleavage of C-N bond followed by C-C bond. The metal-free cleavage of C-C bond, which is in fact a C-dearylation, is rarely reported in the literature.  相似文献   

12.
[reaction: see text] The skeletal reorganization of enynes is achieved by the presence of InCl(3) as the catalyst. The reaction of enynes having a terminal acetylenic moiety proceeds in a stereospecific manner to give 1-vinylcycloalkenes. The reaction of enynes containing an alkyl group on the acetylenic terminal carbon resulted in a new type of skeletal reorganization to give 1-allylcycloalkenes, formation of which involves a double cleavage of the C-C double bond and the triple bond.  相似文献   

13.
A Ni(0)/ZnCl(2) system effectively promotes the coupling of enones and alkene-tethered alkynes. In the reaction with 1,6-enynes, the oxidative cyclization of Ni(0) species on enones across the alkyne part followed by ZnCl(2)-promoted cleavage generates alkenylnickel intermediates. Subsequent migratory insertion of the tethered alkene occurs with 5-exo-cyclization. When the resulting sigma-alkylnickel intermediates have beta-hydrogen atoms, the reaction terminates by beta-hydrogen elimination to provide cyclopentane derivatives. On the other hand, a sigma-alkylnickel intermediate that does not have beta-hydrogen atoms undergoes the insertion of a second alkene unit to cause a domino effect via a three-fold C-C bond formation process with and without the cleavage of one C-C bond.  相似文献   

14.
Substituted phenanthrenes and picenes were easily prepared by reaction of biphenylene or angular [3]phenylene with various alkynes in the presence of a catalytic amount of [IrCl(cod)](2) /dppe (cod=1,5-cyclooctadiene, dppe=1,2-bis(diphenylphosphino)ethane). The reaction is based on C-C bond activation of the cyclobutane ring. The reaction tolerates the presence of bulky groups on the alkyne, such as the ferrocene moiety. In addition, a catalytic system based on [RhCl(cod)](2)/dppe enabled the, hitherto unreported, reaction of biphenylene with nitriles to provide phenanthridines.  相似文献   

15.
Acinetobacter johnsonii acetylacetone dioxygenase (Dke1) is a non-heme Fe(II)-dependent dioxygenase that cleaves C-C bonds in various beta-dicarbonyl compounds capable of undergoing enolization to a cis-beta-keto enol structure. Results from 18O labeling experiments and quantitative structure-reactivity relationship analysis of electronic substituent effects on the substrate cleavage specificity of Dke1 are used to distinguish between two principle chemical mechanisms of reaction: one involving a 1,2-dioxetane intermediate and another proceeding via Criegee rearrangement. Oxygenative cleavage of asymmetrically substituted beta-dicarbonyl substrates occurs at the bond adjacent to the most electron-deficient carbonyl carbon. Replacement of the acetyl group in 1-phenyl-1,3-butanedione by a trifluoro-acetyl group leads to a complete reversal of cleavage frequency from 83% to only 8% fission of the bond next to the benzoyl moiety. The structure-activity correlation for Dke1 strongly suggests that enzymatic bond cleavage takes place via nucleophilic attack to generate a dioxetane, which then decomposes into the carboxylate and alpha-keto-aldehyde products.  相似文献   

16.
A new one-pot synthesis of 2-(hetero)aryl indoles via sequential C-C coupling followed by C-Si bond cleavage and a subsequent tandem C-C/C-N bond forming reaction is described. A variety of functionalized indole derivatives were prepared by conducting this four step reaction under Pd/C-Cu catalysis. The methodology involved coupling of (trimethylsilyl)acetylene with iodoarenes in the presence of 10% Pd/C-CuI-PPh(3) and triethylamine in MeOH, followed by treating the reaction mixture with K(2)CO(3) in aqueous MeOH, and finally coupling with o-iodoanilides. The single crystal X-ray data of a synthesized indole derivative is presented. Application of the methodology, in vitro pharmacological properties of the synthesized compound, along with a docking study is described.  相似文献   

17.
The B3LYP density functional studies on the dirhodium tetracarboxylate-catalyzed C-H bond activation/C-C bond formation reaction of a diazo compound with an alkane revealed the energetics and the geometry of important intermediates and transition states in the catalytic cycle. The reaction is initiated by complexation between the rhodium catalyst and the diazo compound. Driven by the back-donation from the Rh 4d(xz) orbital to the C[bond]N sigma*-orbital, nitrogen extrusion takes place to afford a rhodium[bond]carbene complex. The carbene carbon of the complex is strongly electrophilic because of its vacant 2p orbital. The C[bond]H activation/C[bond]C formation proceeds in a single step through a three-centered hydride transfer-like transition state with a small activation energy. Only one of the two rhodium atoms works as a carbene binding site throughout the reaction, and the other rhodium atom assists the C[bond]H insertion reaction. The second Rh atom acts as a mobile ligand for the first one to enhance the electrophilicity of the carbene moiety and to facilitate the cleavage of the rhodium[bond]carbon bond. The calculations reproduce experimental data including the activation enthalpy of the nitrogen extrusion, the kinetic isotope effect of the C[bond]H insertion, and the reactivity order of the C[bond]H bond.  相似文献   

18.
Herein, we report transition metal-catalyzed intramolecular cyclization of o-(1-alkynyl)benzenesulfonamides to afford 3-substituted benzothiazines regioselectively via a C-N bond forming reaction and Cu-catalyzed sequential C-N and C-C bond formation leading to the corresponding 3,4-disubstituted derivatives.  相似文献   

19.
The favored fragmentation pathway for protonated and alkylated pyridinium cations of the general formula p-XC(6)H(4)CH(2)CH(2)CH=CH Py(+)R (R=H, Me; Py=pyridine) is a C-C homolytic cleavage. The tendency to form radicals is higher for alkylated pyridinium cations than for the protonated ones that can also afford closed-shell products. Theoretical calculations show that the singlet-triplet gap for transient structures with an elongated benzylic C-C bond is very low and the formation of radicals may result from mixing of these states. In addition to the notable substituent effect on the fragmentation efficiency of the cations under study, calculated results show a clear substituent effect on the singlet-triplet transitions. We also observe that triphenylphosphonium cations behave notably different. Thus, the pyridinium system that contains a p-chloro benzyl moiety loses a benzyl radical readily while the analogous triphenylphosphonium cation is very stable under the same conditions.  相似文献   

20.
1,3-Dicarbonyl compounds add to unactivated alkynes in the presence of a catalytic amount of indium(III) trifluoromethanesulfonate in high to excellent yield to give 2-alkenylated 1,3-dicarbonyl compounds with exclusive regioselectivity as to the position of C-C bond formation on the acetylene moiety. In most of the cases, the reaction requires less than 1-mol % loading of the catalyst and does not require solvent. The reaction tolerates a wide variety of functional groups including ester, ether, allylic halide, furan, thiophene, and protected amine. Experimental and theoretical studies suggested that the reaction proceeds via a concerted carbometalation reaction of an indium(III) enolate with the acetylene, where indium-acetylene interaction is important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号