首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Grafting of swelling clay materials with 3-aminopropyltriethoxysilane   总被引:5,自引:0,他引:5  
The grafting reaction between a trifunctional silylating agent and two kinds of 2:1 type layered silicates was studied using FTIR, XRD, TGA, and 29Si CP/MAS NMR. XRD patterns clearly indicate the introduction of 3-aminopropyltriethoxysilane (gamma-APS) into the clay interlayer. In the natural montmorillonite, gamma-APS adopts a parallel-bilayer arrangement, while it adopts a parallel-monolayer arrangement in the synthetic fluorohectorite. These different silane arrangements have a prominent effect on the mechanism of the condensation reaction within the clay gallery. In natural montmorillonite, the parallel-bilayer arrangement of gamma-APS results in bidentate (T2) and tridendate (T3) molecular environments, while the parallel-monolayer arrangement leads to monodentate (T1), as indicated by 29Si CP/MAS NMR spectra. This study demonstrates that the silylation reaction and the interlayer microstructure of the grafting products strongly depend on the original clay materials.  相似文献   

2.
A new class of organic-inorganic hybrid aerogels having small pores and narrow pore size distribution are synthesized from well-dispersed clay platelets in water as base catalyst. Clay-catalyzed organic gels have strong advantage in controlling nanopore structure as well as reducing drying shrinkage by reinforcing the organic network with inorganic platelets.  相似文献   

3.
We report on the controlled chemical grafting of well-defined polymer chains onto individual montmorillonite-type clay nanoplatelets and the direct visualization of the formed hybrid material at the nanoscale level. Our approach is based on the use of a surfactant mixture that contains varying proportions of hydroxyl-substituted alkylammonium and unsubstituted alkylammonium cations to exchange the initial Na(+) counterions of the natural montmorillonite. This allows for the exchange of Na(+) by a tunable amount of hydroxyl functions at the surface of the clays. Those functions are then derivatized into aluminum alkoxides in order to initiate the ring-opening polymerization of epsilon-caprolactone directly from the clay surface that was swollen in an organic solvent. Atomic force microscopy measurements on the resulting polymer-grafted nanoplatelets demonstrate the strong dependence of the coating of the individual clay particles with the composition of the surfactant mixture used for the cationic exchange. This allows for the generation of a range of morphologies varying from polymer islands distributed over the clay surface to homogeneous polymer layers thoroughly coating the platelets. Finally, the control that is achievable over the synthesis of this new family of organic-inorganic nanohybrid materials has been extended to the surface grafting of semicrystalline poly(epsilon-caprolactone)-poly(lactic acid) diblock copolymers with defined compositions.  相似文献   

4.
5.
We perform grand-canonical molecular simulations to study the molecular mechanism of clay swelling hysteresis as a function of the relative humidity. In particular, we focus on the transition from the one- to the two-layer hydrate and the influence of three types of counterions (Li+, Na+, and K+). Our results cover the experimental relative humidity region where swelling and shrinking usually occur. We show that the thermodynamic origin of swelling hysteresis is a free-energy barrier separating the layered hydrates. This free-energy barrier is dominated by breaking and formation of hydrogen bonds between and within water layers. This network of water molecules is similar for all counterions, but the positions of these counterions depend upon their size. The relatively large K+ counterions show more affinity for clay surface adsorption, which increases the free-energy barrier and inhibits swelling. On the other hand, the relatively small Li+ counterions are quite well-accommodated in the water network, and thereby, they can form a new swelling state with a basal spacing of approximately 13.5 A. This new swelling state is an alternative explanation for the widely accepted simultaneous occurrence of two or more swelling phases.  相似文献   

6.
The radiation-induced grafting of low-density polyethylene in contact with styrene solution was studied. The effect of the degree of swelling of the polymer on the rate of grafting was investigated by diluting the styrene with methanol and with n-octane. For styrene-methanol solution, the rate of grafting was found to increase with degree of swelling, passing through a maximum when the sorbed solvent reaches 6.2 wt-% (70 vol-% methanol in the outside solution) and decreasing therafter. The methanol fraction of the sorbed liquid is far too small to cause precipitation of the grafted chains and inhibition of their termination rate. The dilution of styrene by octane has no effect on the swelling of polyethylene, but it decreases the grafting rate over the entire concentration range. The results are explained in terms of the concentration of sorbed monomer and the viscosity of the amorphous region of the polyethylene swollen by nonpolar liquids. Supporting evidence for the mechanism is presented in the form of grafting kinetic data as a function of dose rate (2.8 × 102?9.5 × 104 rad/hr), and post-irradiation grafting measurements for polyethylene in methanol-styrene (70/30, v/v). The data indicate that at the maximum grafting rate an optimum is achieved between a high concentration of sorbed monomer and a low viscosity for the poorly swelled polymer matrix.  相似文献   

7.
Collective excitations of water confined in the interlayer space of swelling clay minerals were studied by means of inelastic neutron scattering. The effect of bidimensional confinement on the dynamics of the interlayer water was investigated by using a synthetic Na-saponite sample with a general formula of Si(7.3)Al(0.7)Mg(6)O(20)(OH)(4)Na(0.7) in a bilayer hydration state. Experimental results reveal two inelastic signals, different from those described for bulk water with a clear anisotropy on the low-energy excitation of the collective dynamics of interlayer water, this difference being stronger in the perpendicular direction. Results obtained for the parallel direction follow the same trend as bulk water, and the effect of the confinement is mainly manifested from the fact that clay interlayer water is more structured than bulk water. Data obtained in the perpendicular direction display a nondispersive behavior below a cutoff wavenumber value, Q(c), indicating a nonpropagative excitation below that value. Molecular dynamics simulations results agree qualitatively with the experimental results.  相似文献   

8.
Frequent detection of pharmaceuticals in surface water and wastewater attracted renewed attention on studying interactions between pharmaceuticals and sludge or biosolids generated from wastewater treatment. Less attention was focused on studying interactions between pharmaceuticals and clay minerals, important soil and sediment components. This research targeted on investigating interactions between diphenhydramine (DPH), an important antihistamine drug, and a montmorillonite, a swelling clay, in aqueous solution. Stoichiometric desorption of exchangeable cations accompanying DPH adsorption confirmed that cation exchange was the most important mechanism of DPH uptake by the swelling clay. When the solution pH was below the pK(a) of DPH, its adsorption on the swelling clay was less affected by pH. Increasing solution pH above the pK(a) value resulted in a decrease in DPH adsorption by the clay. An increase in d(001) spacing at a high DPH loading level suggested interlayer adsorption, thus, intercalation of DPH. The results from this study showed that swelling clays are a good environmental sink for weak acidic drugs like DPH. In addition, the large cation exchange capacity and surface area make the clay a good candidate to remove cationic pharmaceuticals from the effluent of wastewater treatment facilities.  相似文献   

9.
10.
The quartz contents (maximum, 4 wt.%) of four clay materials and a tourmaline were determined by differential thermal analysis, by X-ray diffraction and by chemical analysis. The results are used to make a critical comparison of these three methods. DTA gives a better precision than X-ray diffraction analysis. The chemical method is judged unreliable in that feldspar and mica, present as minor components, are recorded in part as quartz.  相似文献   

11.
The quartz contents (maximum, 4 wt.%) of four clay materials and a tourmaline were determined by differential thermal analysis, by X-ray diffraction and by chemical analysis. The results are used to make a critical comparison of these three methods. DTA gives a better precision than X-ray diffraction analysis. The chemical method is judged unreliable in that feldspar and mica, present as minor components, are recorded in part as quartz.
Zusammenfassung Der Quarzgehalt (max. 4%) von vier Tonmineralien und von Turmalin wurde durch Differentialthermoanalyse, Röntgendiffraktion und chemische Analyse bestimmt. Die Ergebnisse ermöglichten einen kritischen Vergleich der drei Methoden. Die DTA ist genauer als die Röntgendiffraktion. Die Chemische Analyse ist unzuverläßlich, da kleinere Mengen an Feldspat und Glimmer ebenfalls teilweise als Quarz erfaßt werden.

Résumé On a déterminé la teneur en quartz (4% en poids au maximum) de quatre argiles et d'une tourmaline en se servant de l'analyse thermique différentielle, de la diffraction de rayons X et de l'analyse chimique. On a utilisé les résultats pour faire une étude critique des trois méthodes. L'ATD donne une meilleure précision que l'analyse par diffraction X. L'analyse chimique présente peu de sûreté car le feldspath et le mica, présents à l'état de constituants mineurs, interviennent en partie comme le quartz.

, - . 4 % . . , , — . , , .. .


The authors express their thanks to the Directors of English Clays Lovering Pochin & Co. Ltd. for permission to publish this paper.  相似文献   

12.
The emanation factor of clay strata was measured in a series of experiments. The clay emanation factor grows with increased dispersion and can reach values of up to 67%. This can be explained, in our view, by the increased number of nanodimensional particles with good emanation characteristics.  相似文献   

13.
The effects of replacing the native Na(+) counter ions associated with the clay platelets by various other cations on the swelling behavior of nanocomposite (NC) gels consisting of an organic (polymer)/inorganic (clay) network were investigated. The negative surface charge of the clay platelet conferred an ionic nature on the NC gels making them a type of polyelectrolyte gel; consequently, the swelling behavior of the NC gels was strongly influenced by the valence of the co-existing counter ions. NC gels containing monovalent cations such as Na(+), K(+) and Li(+) exhibited large swellings and subsequent deswelling in water after attaining maximum degrees of swelling. In contrast, introduction of multivalent cations such as Ca(2+), Mg(2+), and Al(3+) into NC gels depressed markedly both the swelling and subsequent deswelling. The decreased swelling and suppressed deswelling with multivalent ions were strongly influenced by the initial gel state and result from the formation of additional cross-links through ionic interactions between the clay platelets and the multivalent cations. Also, the similar swelling behaviors were observed for all NC gels with different clay concentration. Further, reversible absorption/desorption and selective absorption of multivalent cations were observed for the NC gels examined.  相似文献   

14.
以丙烯酰胺(AM),烯丙醇聚氧乙烯醚(APEG)和溴化烯丙基喹啉(QAB)为单体,制备了一种阳离子聚合物AM/APEG/QAB。考察了单体配比、pH、引发剂浓度以及温度等合成条件对防膨率的影响。对聚合物进行了FTIR、1H NMR及TG表征。研究了不同浓度下聚合物溶液的防膨率,并利用XRD研究了聚合物溶液对钠蒙脱土(Na-MMT)层间距的影响。结果表明:该聚合物在浓度为2 wt%时的防膨率能达到78%。与低浓度的KCl互配不仅能够有效降低Na-MMT层间距到15.80,同时能够将岩心在水中浸泡后压入硬度保留率从42.6%提高至75.0%。  相似文献   

15.
The heterogeneous polymerization of vinylidene fluoride (VDF) was investigated at 50 °C with supercritical carbon dioxide (scCO2) as a dispersing medium and diethylperoxidicarbonate as an initiator in the presence of different perfluoropolyether surfactants. When FLK 7004A ammonium carboxylate salts were used at a 5% (w/w) concentration with respect to VDF, with an initial pressure of 31–45 MPa and with an olefin concentration of about 5.5 mol/L, monomer conversions up to 63% were obtained, corresponding to a final solid content higher than 200 g/L, and the polymer was collected at the end of the process in the form of a white powder completely composed of microspheres. The effects of the density of the polymerization mixture, the monomer loading, and the surfactant concentration were studied. Collected experimental results suggest that Fluorolink ammonium perfluoropolyether carboxylic salts are the most effective surfactants yet tested in the dispersion polymerization of VDF in scCO2. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2406–2418, 2006  相似文献   

16.
Experiments measuring the solubility of kaolin particles in terms of the concentration of aluminum and silicon ions in supernatant were carried out as a function of the pH of the slurry over a wide range of dosages of different dispersing agents varying from 0.5 to 12 mg/(g solids). The concentrations of the metal ions in supernatant were found to be strongly affected by the type and the dosage of the dispersants and pH of the solution. In this study, the mechanism of the reaction between the dispersing agents and kaolin particles was studied and the dissolution capacities of metal ions (aluminum and silicon) were identified from kaolin particles in the absence and presence of dispersing agents. The three anionic dispersing agents used were sodium polyacrylate (Na-PAA), sodium hexametaphosphate (Na-HMP), and sodium silicate (Na-silicate), based on the industrial application of these agents and their ability to produce a stable dispersion for this purpose.  相似文献   

17.
Nanocrystalline ZnO particles have been prepared with different methods using zinc cyclohexanebutyrate as precursor in dimethyl sulfoxide (DMSO) medium via alkaline hydrolysis. A series of preparations were carried out in the presence of layered silicates (kaolinite and montmorillonite). It was revealed by different measurement techniques that the presence of the clay minerals has a stabilization influence on the size of the ZnO nanocrystals. UV-vis absorption spectra show a blue shift when the nanoparticles are prepared in the presence of the clay minerals. The average particle diameters calculated from the Brus equation ranged from 2.6 to 13.0 nm. The UV-vis spectra of the synthesized nanoparticles did not show any red shift after 2-3 days, demonstrating that stable ZnO nanocrystals are present in the dispersions. The presence of the ZnO nanoparticles was also proven by fluorescence measurements. A number of the nanoparticles are incorporated into the interlamellar space of the clays, and an intercalated structure is formed as proven by X-ray diffraction (XRD) measurements. The size of the nanoparticles in the interlamellar space is in the range of 1-2 nm according to the XRD patterns. Transmission electron microscopy and high-resolution transmission electron microscopy investigations were applied to determine directly the particle size and the size distribution of the nanoparticles.  相似文献   

18.
We report in this article a comprehensive investigation of the viscoelastic behavior of different natural colloidal clay minerals in aqueous solution. Rheological experiments were carried out under both dynamic and steady-state conditions, allowing us to derive the elasticity and yield stress. Both parameters can be renormalized for all sizes, ionic strength, and type of clay using in a first approach only the volume of the particles. However, applying such a treatment to various clays of similar shapes and sizes yields differences that can be linked to the repulsion strength and charge location in the swelling clays. The stronger the repulsive interactions, the better the orientation of clay particles in flows. In addition, a master linear relationship between the elasticity and yield stress whose value corresponds to a critical deformation of 0.1 was evidenced. Such a relationship may be general for any colloidal suspension of anisometric particles as revealed by the analysis of various experimental data obtained on either disk-shaped or lath- and rod-shaped particles. The particle size dependence of the sol-gel transition was also investigated in detail. To understand why suspensions of larger particles gel at a higher volume fraction, we propose a very simplified view based on the statistical hydrodynamic trapping of a particle by an another one in its neighborhood upon translation and during a short period of time. We show that the key parameter describing this hydrodynamic trapping varies as the cube of the average diameter and captures most features of the sol-gel transition. Finally, we pointed out that in the high shear limit the suspension viscosity is still closely related to electrostatic interactions and follows the same trends as the viscoelastic properties.  相似文献   

19.
Two clays of the areas of Kaélé and Kousseri (extreme North Cameroon) containing mainly smectites and minor amounts of kaolinite were activated with sulfuric acid (1 to 8 N). Crystal-chemical properties were studied using X-ray diffraction, Fourier transform infrared spectroscopy, and chemical analysis, while textural properties were analyzed by step-by-step nitrogen adsorption at 77 K and low-pressure quasi-equilibrium argon adsorption at 77 K. As is generally observed, smectite is more sensitive to acid leaching than kaolinite. As a result of smectite decomposition, amorphous Al-containing silica forms, leading to an increase in the specific surface area of the leached materials. The content of the clay minerals and amorphous silica can be estimated on the basis of changes in the chemical composition of the samples upon acid leaching. As far as adsorption energy distributions derived from low-pressure argon derivative adsorption isotherms are concerned, the main modifications occur when 1 N sulfuric acid is used, due to the replacement of calcium and sodium compensating cations by protons. When higher acid concentrations are used, variations in adsorption energy distribution can be assigned to the presence of amorphous silica. It was possible to model experimental adsorption energy distributions as weighted sums of argon adsorption energy distributions obtained on (i) 1 N samples representing protonated clays and (ii) a silica gel used as a reference aluminous silica. Using such an approach, increasing acid concentration results in an increase in the surface area of silica, whereas the surface area of the remaining clay minerals remains roughly constant.  相似文献   

20.
This study was focused on the investigation of novel hybrid organo/inorganic systems for oxygen sensing applications. As a host material, a synthetic clay mineral Sumecton SA was chosen, while, as guest materials, metalloporphyrins containing Pt(II) and Pd(II) were chosen. These are known to be very efficient agents for sensing applications because of a “heavy atom effect”. This effect promotes a spin-orbit coupling, resulting in the fact that almost all of the radiation from a singlet excited state undergoes intersystem crossing, followed by a de-excitation via a triplet state. The combination of metalloporphyrin and layered materials enables unique oxygen sensing properties due to the steric effects of layered materials. The result is that the emission from the membrane was sensitive at the range around aerobic conditions. The spectroscopic analysis of hybrid systems — clay/porphyrin membranes (CPMs) showed that these materials can serve as prospective candidates for the construction of effective, reliable and economical oxygen sensors.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号