首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we report the development and optimization of an industrial culture medium for the production of extracellular lipase in the yeast Yarrowia lipolytica. Until now olive oil in combination with glucose was used as the carbon source and inducer for the production of lipase. Our results demonstrate that methyloleate, a cheap hydrophobic compound, could efficiently substitute olive oil as the inducer and carbon source for lipase production. A new process of lipase production was developed yielding a twofold increase in the level of production compared with the levels in previous reports.  相似文献   

2.
Summary An extracellular lipase was produced by Bacillus coagulans by solid-state fermentation. Solid waste from melon was used as the basic nutrient source and was supplemented with olive oil. The highest lipase production (78,069 U/g) was achieved after 24h of cultivation with 1% olive oil enrichment. Enzyme had an optimal activity at 37°C and pH 7.0, and sodium dodecyl sulfate increased lipase activity. NH 4NO3 increased enzyme production, whereas organic nitrogen had no effect. The effect of the type of carbon sources on lipolytic enzyme production was also studied. The best results were obtained with starch and maltose (148,932 and 141,629 U/g, respectively), whereas a rather low enzyme activity was found in cultures grown on glucose and galactose (approx 118,769 and 123,622 U/g, respectively). Enzyme was inhibited with Mn+2 and Ni+2 by 68 and 74%, respectively. By contrast, Ca+2 enhanced enzyme production by 5%.  相似文献   

3.
The culture medium for Streptomyces lavendulae ATCC 13664 was optimized on a shake-flask scale by using a statistical factorial design for enhanced production of penicillin acylalse. This extracellularenzyme recently has been reported to bea penicillin Kacylase, presenting also high hydrolytic activity against penicillin V and other natural aliphatic penicillins such as penicillin K, penicillin F, and penicillin dihydroF,. The factorial design indicated that the main factors that positively affect penicillin acylase production by S. lavendulae were the concentration of yeast extract and the presence of oligoelements in the fermentation medium, whereas the presence of olive oil in the medium had no effect on enzyme production. An initial concentration of 2.5% (w/v) yeast extract and 3 μg/mL of CuSO4·5H2O was found to be best for acylase production. In such optimized culture medium, fermentation, of the microorganism yielded 289 IU/L of enzyme in 72 h when employing a volume medium/volume flask ratio of 0.4 and a 300-rpm shaking speed. The presence of copper, alone and in combination with other metals, stimulated biomass as well as penicillin acylase production. The time course of penicillin acylase production was also studied in the optimized medium and conditions. Enzyme production showed catabolite repression by different carbon sources such as glucose, lactose, citrate, glycerol, and glycine.  相似文献   

4.
Polypropylene powders as the adsorbent for organic solution containing n-hexadecane and olive oil were employed as the carbon source for producing an alkaline lipase from Acinetobacter radioresistens. The best volumetric ratio of n-hexadecane to olive oil around 5 for lipase production was determined from shake-flask and fermentation cultivations. The existence of a maximum time course lipase activity of the aqueous phase was attributed to the compensation effects of olive oil on cell growth and lipase production, repression of lipase synthesis by oleic acid, and lipase adsorption on the supports. A linear relationship between the average cell growth rate in the exponential phase and the ratio of surface areas of the supports was found. The benefits of using the present fermentation process include less foaming and emulsion of the broth, less organic phase used, higher lipase production, and easy recovery of the lipase in the centrifugation step.  相似文献   

5.
The biosurfactant production potential of a new microbial consortium of Enterobacter cloacae and Pseudomonas sp. (ERCPPI-2) which was isolated from heavy crude oil-contaminated soil in the south of Iran, has been investigated under extreme environmental conditions. The isolated consortium produces a biosurfactant mixture with excessive oil spreading and emulsification properties. This consortium was able to grow and produce biosurfactant at temperatures up to 70 °C, pressures up to 6000 psia, salinities up to 15% (w/v), and in the pH range 4-10. Besides, the optimum biosurfactant production conditions were found to be 40 °C and 7.0 for the temperature and pH value, respectively. These conditions gave the best biosurfactant production of 1.74 g/1 when the cells were grown on a minimal salt medium containing 1.0% (w/v) olive oil, 1.0% (w/v) sodium nitrate supplemented with 1.39% (w/v) K(2)HPO(4) at 40 °C and 150 rpm after 48 h of incubation. The ERCPPI-2 could reduce surface and interfacial tensions to 31.7 and 0.65 mN/m from the original values of 58.3 and 16.9 mN/m, respectively. The isolated consortium produced biosurfactant using heavy crude oil as the sole source of carbon and emulsified the available heavy crude oil up to E(24)=83.4%. The results of the core holder flooding tests at simulated reservoir conditions demonstrated that the oil recovery efficiency due to the injection of the cell-free biosurfactant solution was 27.2%, and the bacterium injection reduced the final residual oil saturations to below 3% at optimum conditions.  相似文献   

6.
The production of lipase by Penicillium simplicissimum in solid-state fermentation was studied using babassu cake as the basal medium. Tray-type and packed-bed bioreactors were employed. In the former, the influence of temperature; content of the medium, and medium supplementation with olive oil, sugarcane molasses, corn steep liquor, and yeast hydrolysate was studied. For all combinations of supplements, a temperature of 30°C, a moisture content of 70%, and a concentration of carbon source of 6.25% (m/m, dry basis) provided optimum conditions for lipase production. When used as single supplements olive oil and molasses also were able to provide high lipase activities (20 U/g). Using packed-bed bioreactors and molasses-supplemented medium, optimum conditions for enzyme production were air superficial velocities above 55 cm/min and temperatures below 28°C. The lower temperature optimum found for these reactors is probably related to radial heat gradient formation inside the packed bed. Maximum lipase activities obtained in these bioreactors (26.4 U/g) were 30% higher than in tray-type reactors.  相似文献   

7.
A lipases (glycerol ester hydrolases E. C. 3.1.1.3) from a brazilian strain ofPenicillium citrinum has been investigated. When the microorganism was cultured in the simple medium (1.0% olive oil and 0.5% yeast extract), using olive oil in as carbon source in the inocula, the enzyme extracted showed maximum activity (409 IU/mL). In addition, decrease of yeast extract concentration also reduces the lipase activity. Nevertheless, when yeast extract was replaced by ammonium sulfate, no activity was detected. Purification by precipitation with ammonium sulfate showed best activity in the 40–60% fraction. The optimum temperature for enzyme activity was found in the range of 34–37°C. However, after 30 min at 60°C, the enzyme was completely inactivated. The enzyme showed optimum at pH 8.0. The dried concentrated fraction (after dialysis and lyophilization) maintained its lipase activity at room temperature (28°C) for 8 mo. This result in lipase stability suggests an application of lipases fromP. citrinum in detergents and other products that require a high stability at room temperature.  相似文献   

8.
Lipase, protease, and amylase production by Penicillium restrictum in solid-state fermentation was investigated. The basal medium was an industrial waste of babassu oil (Orbignya oleifera) production. It was enriched with peptone, oliveoil, and Tween-80. The supplementation positively influenced both enzyme production and fungal growth. Media enriched with Tween-80 provided the highest protease activity (8.6 U/g), whereas those enriched with peptone and olive oil led to the highest lipase (27.8 U/g) and amylase (31.8 U/g) activities, respectively.  相似文献   

9.
The culture medium for Streptomyces lavendulae ATCC 13664 was optimized on a shake-flask scale by using a statistical factorial design for enhanced production of penicillin acylase. This extracellular enzyme recently has been reported to be a penicillin K acylase, presenting also high hydrolytic activity against penicillin V and other natural aliphatic penicillins such as penicillin K, penicillin F, and penicillin dihydroF. The factorial design indicated that the main factors that positively affect penicillin acylase production by S. lavendulae were the concentration of yeast extract and the presence of oligoelements in the fermentation medium, whereas the presence of olive oil in the medium had no effect on enzyme production. An initial concentration of 2.5% (w/v) yeast extract and 3 microg/mL of CuSO4 x 5H2O was found to be best for acylase production. In such optimized culture medium, fermentation of the microorganism yielded 289 IU/L of enzyme in 72 h when employing a volume medium/volume flask ratio of 0.4 and a 300-rpm shaking speed. The presence of copper, alone and in combination with other metals, stimulated biomass as well as penicillin acylase production. The time course of penicillin acylase production was also studied in the optimized medium and conditions. Enzyme production showed catabolite repression by different carbon sources such as glucose, lactose, citrate, glycerol, and glycine.  相似文献   

10.
Lignin peroxidase (LiP) production cost should be reduced to justify its use in the control of environmental pollution. In this work, we studied the enzyme production by Streptomyces viridosporus T7A using glucose or corn oil as a carbon source having 0.65% yeast extract as a nitrogen source. Enzyme activity, observed using either 0.65% glucose or corn oil at 0.1, 0.5, and 1.0% concentration, was 300, 150, 300, and 200 U/L, respectively. Although higher enzyme activity was obtained in both media containing 0.65% glucose and 0.5% corn oil, the use of corn oil resulted in a better LiP stability. When combined carbon sources were used, higher values of enzyme activity (360, 350, and 225 U/L) were observed in media with 0.65% glucose and supplemented with 0.1, 0.5, and 1.0% corn oil, respectively. Although the presence of both glucose and 0.5% corn oil is favorable for LiP production, satisfactory results in terms of enzyme production and stability could be also observed using 0.5% corn oil as a sole carbon source, which may lead to reduced production costs of the LiP enzyme.  相似文献   

11.
In this study, the production and optimization of extracellular lipase from Kluyveromyces marxianus IFO 0288 was investigated by using optimized nutritional and cultural conditions in a yeast medium containing glucose as the carbon source in fully aerobic batch fermentation (150?rpm). The influence of four fermentation parameters (type of lipidic source, initial culture pH, temperature, and length of fermentation) on growth and lipase production was investigated and evaluated using the conventional ??one variable at a time?? approach and response surface methodology. An 18-fold increase in lipase production during 65?h of fermentation was obtained with optimized nutritional (0.5?% olive oil) and cultivation (pH?6.5, 35?°C) conditions by employing the conventional optimization method. By applying the response surface methodology technique the initial pH value of 6.4 and temperature of 32.5?°C were identified as optimal and led to further improvements (up to 18-fold) of extracellular lipase production. The results provide, for the first time, evidence that K. marxianus has the potential to be used as an efficient producer of extracellular lipase with prospective application in a variety of industrial and biotechnological areas.  相似文献   

12.
Olive oil cake is a by-product from the olive oil processing industry and can be used for the lipase and protease production by Candida utilis in solid state fermentation. Different carbon and nitrogen sources were evaluated, and the results showed that the supplementation of the substrate with maltose and starch as carbon sources and yeast extract as a nitrogen source significantly increased the lipase production. The best results were obtained with maltose, whereas rather low lipase and protease activities were found with glucose and oleic acid. Response surface methodology and a five-level–three-factor central composite rotatable design were used to evaluate the effects of the initial moisture content, inoculum size and fermentation time on both lipase and protease activity levels. A lipase activity value of ≈25 U g-1 and a protease activity value of 110 U g-1 were obtained under the optimized fermentation conditions. An alkaline treatment of the substrate appeared to be efficient, leading to increases of 39% and 133% in the lipase and protease production, respectively. The results showed that the olive cake could be a good source for enzyme production by solid state fermentation.  相似文献   

13.
Among the lignocellulosic substrates tested, wheat bran supported a high xylanase (EC 3.2.1.8) secretion by Humicola lanuginosa in solid-state fermentation (SSF). Enzyme production reached a peak in 72 h followed by a decline thereafter. Enzyme production was very high (7832 U/g of dry moldy bran) when wheat bran was moistened with tap water at a substrate-to-moistening agent ratio of 1:2.5 (w/v) and an inoculum level of 3 × 106 spores/10 g of wheat bran at a water activity (a w ) of 0.95. Cultivation of the mold in large enamel trays yielded a xylanase titer comparable with that in flasks. Parametric optimization resulted in a 31% increase in enzyme production in SSF. Xylanase production was approx 23-fold higher in SSF than in submerged fermentation (SmF). A threshold constitutive level of xylanase was secreted by H. lanuginosa in a medium containing glucose as the sole carbon source. The enzyme was induced by xylose and xylan. Enzyme synthesis was repressed beyond 1.0% (w/v) xylose in SmF, whereas it was unaffected up to 3.0% (w/w) in SSF, suggesting a minimization of catabolite repression in SSF.  相似文献   

14.
Phytases act on phytic acid, an antinutrient factor present in animal feeds, and release inorganic phosphate. We optimized the production parameters for phytase production using Thermoascus aurantiacus (TUB F 43), a thermophilic fungal culture, by submerged fermentation. A semisynthetic medium containing glucose, starch, peptone, and minerals supplemented with 3.75% (w/v) wheat bran particles was found to be the best production medium among the various combinations tried. Further supplementation of this medium with surfactants such as Tween-20 and Tween-80 considerably enhanced the enzyme yield. A maximum phytase activity (468.22 U/mL) was obtained using this production medium containing 2% (v/v) Tween-20 after 72 h of fermentation at 45°C in shake-flask cultures with a rotation of 150 rpm. Herein we present details of a few of the process parameter optimizations. The phytase enzyme was found to be thermostable, and the optimal temperature for phytase activity was found to be 55°C. However, 80% of the activity still remained when the temperature was shifted to 70°C.  相似文献   

15.
The effect of aeration on lignin peroxidase production by Streptomyces viridosporus T7A was studied in a bench-scale bioreactor using a previously optimized growth medium (0.65% yeast extract and 0.1% corn oil, pH7.0) at 37°C and natural pH. Airflow rates of 0.3, 1.0, and 1.5 vvm and a fixed agitation of 200 rpm were initially studied followed by 1.0 vvm and 200, 300, 400, and 500 rpm. The use of 1.0 vvm and 400 rpm increased enzyme concentration 1.8-fold (100–180 U/L) and process productivity 4.8-fold (1.4–6.7 U/[L·h]) in comparison with the use of 200 rpm and 0.3 vvm. The inexpensive corn oil, used as carbon source, besides its antifoam properties, proved to be nonrepressive for enzyme production.  相似文献   

16.
The production of yeast cell wall mannan degrading -mannosidase was studied in shake flask experiments as well as in a highly instrumented, computer-coupled bioreactor. The enzyme is predominantly excreted into the culture liquid upon submerged cultivation on yeast mannan. Only low activities were detected with mannose or glucose as carbon source whereas the enzyme formation was totally repressed by glycerol. The amount of enzyme produced is proportional to the microbial biomass formed.Carbon-unlimited cultivation on mannose, the primary product of enzymic digestion, resulted in a specific growth rate of 0.10h–1, a specific oxygen uptake rate ·h and a respiratory quotient ofRQ=1.0. Addition of yeast mannan (0.5%) to nutrient-depleted bacterial cells resulted in an almost complete utilization of this substrate, with 55% of substrate carbon being converted to biomass and 37% to carbon dioxide. The yield coefficient on mannan wasY x/s =0.51 (g/g). Enzyme formation started with a delay of 30–40 min and stopped with termination of growth. Due to the increased production of mannose by the action of the enzyme the specific growth rate increased from 0.05 to 0.10 h–1, thus enabling computations of maintenance and yield coefficients for oxygen and carbon dioxide metabolism.
  相似文献   

17.
Although Upases have been intensively studied, some aspects of enzyme production like substrate uptake, catabolite repression, and enzyme stability under long storage periods are seldom discussed in the literature. This work deals with the production of lipase by a new selected strain ofCandida lipolytica. Concerning nutrition, it was observed that inorganic nitrogen sources were not as effective as peptone, and that oleic acid or triacylglycerides (TAG) were essential carbon sources. Repression by glucose and stimulation by oleic acid and long chain TAG (triolein and olive oil) were observed. Extracellular lipase activity was only observed at high levels at late stationary phase, whereas intracellular lipase levels were constant and almost undetectable during the cultivation period, suggesting that the produced enzyme was attached to the cell wall, mainly at the beginning of cultivation. The crude lipase produced by this yeast strain shows the following optima conditions: pH 8.0–10.0, temperature of 55°C. Moreover, this preparation maintains its full activity for at least 370 d at 5°C.  相似文献   

18.
The aim of this study was to monitor the biomass growth of Aspergillus niger in solid-state fermentation (SSF) for lipase production using digital image processing technique. The strain A. niger 11T53A14 was cultivated in SSF using wheat bran as support, which was enriched with 0.91% (m/v) of ammonium sulfate. The addition of several vegetable oils (castor, soybean, olive, corn, and palm oils) was investigated to enhance lipase production. The maximum lipase activity was obtained using 2% (m/m) castor oil. In these conditions, the growth was evaluated each 24 h for 5 days by the glycosamine content analysis and digital image processing. Lipase activity was also determined. The results indicated that the digital image process technique can be used to monitor biomass growth in a SSF process and to correlate biomass growth and enzyme activity. In addition, the immobilized esterification lipase activity was determined for the butyl oleate synthesis, with and without 50% v/v hexane, resulting in 650 and 120 U/g, respectively. The enzyme was also used for transesterification of soybean oil and ethanol with maximum yield of 2.4%, after 30 min of reaction.  相似文献   

19.
This study documents the similar pH-dependent shift in pyruvate metabolism exhibited byZymomonas mobilis ATCC 29191 and ATCC 39676 in response to controlled changes in their steady-state growth environment. The usual high degree of ethanol selectivity associated with glucose fermentation by Z.mobilis is associated with conditions that promote rapid and robust growth, with about 95% of the substrate (5% w/v glucose) being converted to ethanol and CO2, and the remaining 5% being used for the synthesis of cell mass. Conditions that promote energetic uncoupling cause the conversion efficiency to increase to 98% as a result of the reduction in growth yield (cell mass production). Under conditions of glucose-limited growth in a chemostat, with the pH controlled at 6.0, the conversion efficiency was observed to decrease from 95% at a specific growth rate of 0.2/h to only 80% at 0.042/h. The decrease in ethanol yield was solely attributable to the pH-dependent shift in pyruvate metabolism, resulting in the production of lactic acid as a fermentation byproduct. At a dilution rate (D) of 0.042/h, decreasing from pH 6.0 to 5.5 resulted in a decrease in lactic acid from 10.8 to 7.5 g/L. Lactic acid synthesis depended on the presence of yeast extract (YE) or tryptone in the 5% (w/v) glucose-mineral salts medium. At D = 0.15/h, reduction in the level of YE from 3 to 1 g/L caused a threefold decrease in the steady-state concentration of lactic acid at pH 6. No lactic acid was produced with the same mineral salts medium, with ammonium chloride as the sole source of assimilable nitrogen. With the defined salts medium, the conversion efficiency was 98% of theoretical maximum. When chemostat cultures were used as seed for pH-stat batch fermentations, the amount of lactic acid produced correlated well with the activity of the chemostat culture; however, the mechanism of this prolonged induction  相似文献   

20.
The possibility of using two by-products of the sugar cane industry, molasses and bagasse steam explosion liquor (SEL), for lignin peroxidase (LiP) production by Phanerochaete chrysosporium was investigated. For comparison, the fungus was initially cultivated in synthetic media containing either glucose, sucrose, xylose, or xylan as sole carbon sources. The effect of veratryl alcohol (VA) was also investigated in relation to the enzyme activity levels. Results showed that sucrose was not metabolized by this fungus, which precluded the use of molasses as a carbon source. Glucose, xylose, and xylan promoted equivalent cell growth. Enzyme levels in the absence of VA were lower than 28 UI/L and in the presence of VA reached 109 IU/L with glucose and 85 IU/L with xylose or xylan. SEL was adequate for P. chrysosporium LiP production as LiP activity reached 90 IU/L. When VA was added to this medium, enzyme concentration increased to 155 IU/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号