首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Penicillium nalgiovense PNA9 produces an extracellular protease during fermentation with characteristics of growth-associated product. Enzyme purification involved ammonium sulfate precipitation, dialysis, and ultrafiltration, resulting in 12.1-fold increase of specific activity (19.5 U/mg). The protein was isolated through a series of BN-PAGE and native PAGE runs. ESI-MS analysis confirmed the molecular mass of 45.2 kDa. N-Terminal sequencing (MGFLKLLKGSLATLAVVNAGKLLTANDGDE) revealed 93 % similarity to a Penicillium chrysogenum protease, identified as major allergen. The protease exhibits simple Michaelis-Menten kinetics and K m (1.152 mg/ml), V max (0.827 mg/ml/min), and k cat (3.2?×?102) (1/s) values against azocasein show that it possesses high substrate affinity and catalytic efficiency. The protease is active within 10–45 °C, pH 4.0–10.0, and 0–3 M NaCl, while maximum activity was observed at 35 °C, pH 8.0, and 0.25 M NaCl. It is active against the muscle proteins actin and myosin and inactive against myoglobin. It is highly stable in the presence of non-ionic surfactants, hydrogen peroxide, BTNB, and EDTA. Activity was inhibited by SDS, Mn2+ and Zn2+, and by the serine protease inhibitor PMSF, indicating the serine protease nature of the enzyme. These properties make the novel protease a suitable candidate enzyme in meat ripening and other biotechnological applications.  相似文献   

2.
A solvent tolerant Pseudomonas aeruginosa PseA strain was isolated from soil. It secreted a novel alkaline protease, which was stable and active in the presence of range of organic solvents, thus potentially useful for catalysis in non-aqueous media. The protease was purified 11.6-fold with 60% recovery by combination of ion exchange and hydrophobic interaction chromatography using Q-Sepharose and Phenyl Sepharose 6 Fast Flow matrix, respectively. The apparent molecular mass based on the sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was estimated to be 35,000 Da. The enzyme was stable in the pH range of 6.0-9.0, the optimum being 8.0. The Km and Vmax towards caseinolytic activity were found to be 2.7 mg/ml and 3 micromol/min, respectively. The protease was most active at 60 degrees C and characterized as a metalloprotease because of its sensitivity to EDTA and 1,10-phenanthroline. It was tested positive for elastase activity towards elastin-orcein, thus appears to be an elastase, which is known as pseudolysin in other strains of P. aeruginosa. The protease withstands range of detergents, surfactants and solvents. It is stable and active in all the solvents having log P above 3.2, at least up to 72 h. These two properties make it an ideal choice for applications in detergent formulations and enzymatic peptide synthesis.  相似文献   

3.
Protease A has been isolated in the homogeneous state from dormant seeds of cotton plants of the Tashkent-I variety. A scheme is proposed for the isolation and purification of the enzyme which includes the following stages: extraction of the defatted seeds with 0.1 M phosphate buffer, pH 7.4; precipitation of the protein with ammonium sulfate at 60% saturation; desalting by dialysis; and ionexchange chromatography on a column containing CM- and DEAE-celluloses. The molecular weight of the enzyme has been determined as 60,000. The enzyme efficiently hydrolyzes azocasein and the 7S and 11S reserve proteins of cotton seeds. Its maximum activity appears at pH 6.4–7.4 and a temperature of 35–40°C; it is not activated by sulfhydryl reagents and loses its activity in the presence of diisopropyl phosphorofluoridate. The assumption is made that protease A belongs to the serine type of trypsin-like proteases.  相似文献   

4.
A solvent-stable protease-producing bacterium was isolated and identified as Pseudomonas aeruginosa A2. The strain was found to produce high level of protease activity when grown in media containing only fresh shrimp waste (FSW) or shrimp waste powder (SWP), indicating that it can obtain its carbon, nitrogen, and salts requirements directly from shrimp waste. Maximum protease activities 17,000 and 12,000 U/mL were obtained with 80 g/L SWP and 135 g/L FSW, respectively. The optimum temperature and pH for protease activity were 60 °C and 8.0, respectively. The crude protease, at different enzyme/substrate (E/S) ratio, was tested for the deproteinization of shrimp waste to produce chitin. The crude enzyme of P. aeruginosa A2 was found to be effective in the deproteinization of shrimp waste. The protein removals after 3 h hydrolysis at 40 °C with an E/S ratio of 0.5 and 5 U/mg protein were about 56% and 85%, respectively. 13C CP/MAS-NMR spectral analysis of the chitin prepared by treatment with the crude protease was carried out and was found to be similar to that of the commercial α-chitin. These results suggest that enzymatic deproteinization of shrimp waste by A2 protease could be applicable to the chitin production process.  相似文献   

5.
Alkaline proteases from the viscera of the striped seabream (Lithognathus mormyrus) were extracted and characterized. Interestingly, the crude enzyme was active over a wide range of pH from 6.0 to 11.0, with an optimum pH at the range of 8.0–10.0. In addition, the crude protease was stable over a broad pH range (5.0–12.0). The optimum temperature for enzyme activity was 50 °C. The crude alkaline proteases showed stability towards various surfactants and bleach agents and compatibility with some commercial detergents. It was stable towards several organic solvents and retained more than 50% of its original activity after 30 days of incubation at 30 °C in the presence of 25% (v/v) dimethyl sulfoxide, N,N-dimethylformamide, diethyl ether, and hexane. The crude enzyme extract was also tested for shrimp waste deproteinization in the preparation of chitin. The protein removal with a ratio enzyme/substrate of 10 was about 79%.  相似文献   

6.
Cucumisin (EC 3.4.21.25) isolated from prince melon fruit is a plant serine protease. Its milk-clotting activity was compared with plant cysteine proteases such as papain (EC 3.4.22.2) and ficain (EC 3.4.22.3). Cucumisin was more stable than papain under the condition of pH 7.1, 37‡C for 24 h. The milk-clotting activity of cucumisin was the same to that of papain and was half value of that of ficain.  相似文献   

7.
The current increase in amount of shrimp wastes produced by the shrimp industry has led to the need in finding new methods for shrimp wastes disposal. In this study, an extracellular organic solvent- and oxidant-stable metalloprotease was produced by Bacillus cereus SV1. Maximum protease activity (5,900 U/mL) was obtained when the strain was grown in medium containing 40 g/L shrimp wastes powder as a sole carbon source. The optimum pH, optimum temperature, pH stability, and thermal stability of the crude enzyme preparation were pH 8.0, 60 °C, pH 6–9.5, and <55 °C, respectively. The crude protease was extremely stable toward several organic solvents. No loss of activity was observed even after 60 days of incubation at 30 °C in the presence of 50% (v/v) dimethyl sulfoxide and ethyl ether; the enzyme retained more than 70% of its original activity in the presence of ethanol and N,N-dimethylformamide. The protease showed high stability toward anionic (SDS) and non-ionic (Tween 80, Tween 20, and Triton X-100) surfactants. Interestingly, the activity of the enzyme was significantly enhanced by oxidizing agents. In addition, the enzyme showed excellent compatibility with some commercial liquid detergents. The protease of B. cereus SV1, produced under the optimal culture conditions, was tested for shrimp waste deproteinization in the preparation of chitin. The protein removal with a ratio E/S of 20 was about 88%. The novelties of the SV1 protease include its high stability to organic solvents and surfactants. These unique properties make it an ideal choice for application in detergent formulations and enzymatic peptide synthesis. In addition, the enzyme may find potential applications in the deproteinization of shrimp wastes to produce chitin.  相似文献   

8.
CLP is a novel hybrid peptide derived from CM4, LL37 and TP5, with significantly reduced hemolytic activity and increased antibacterial activity than parental antimicrobial peptides. To avoid host toxicity and obtain high-level bio-production of CLP, we established a His-tagged SUMO fusion expression system in Escherichia coli. The fusion protein can be purified using a Nickel column, cleaved by TEV protease, and further purified in flow-through of the Nickel column. As a result, the recombinant CLP with a yield of 27.56 mg/L and a purity of 93.6% was obtained. The purified CLP exhibits potent antimicrobial activity against gram+ and gram- bacteria. Furthermore, the result of propidium iodide staining and scanning electron microscopy (SEM) showed that CLP can induce the membrane permeabilization and cell death of Enterotoxigenic Escherichia coli (ETEC) K88. The analysis of thermal stability results showed that the antibacterial activity of CLP decreases slightly below 70 °C for 30 min. However, when the temperature was above 70 °C, the antibacterial activity was significantly decreased. In addition, the antibacterial activity of CLP was stable in the pH range from 4.0 to 9.0; however, when pH was below 4.0 and over 9.0, the activity of CLP decreased significantly. In the presence of various proteases, such as pepsin, papain, trypsin and proteinase K, the antibacterial activity of CLP remained above 46.2%. In summary, this study not only provides an effective strategy for high-level production of antimicrobial peptides and evaluates the interference factors that affect the biological activity of hybrid peptide CLP, but also paves the way for further exploration of the treatment of multidrug-resistant bacterial infections.  相似文献   

9.
An acid protease having milk clotting activity has been isolated fromMucor bacilliformis cultures. The enzyme was basically purified by ionic exchange chromatography. An average yield of 29 mg purified product was obtained from 100 mL crude extract. As purity criteria, SDS-PAGE, reverse-phase HPLC, and N-terminal analysis were performed. The protease is a protein composed of a single polypeptide chain with glycine at the N-terminus. The mol wt is approx 32,000, and its amino acid composition is very similar to those of other fungal proteases. As expected, its clotting activity was drastically inhibited by pepstatin A action. On the other hand, its instability against heat treatment and its clotting/proteolytic activity ratio indicate that it may be considered as a potential substitute for bovine chymosin. Index Entries:Mucor bacilliformis protease; milk clotting enzyme; acid protease; fungal protease; aspartyl protease.  相似文献   

10.
Intestine proteases of Nile tilapia (Oreochromis niloticus) were partially purified by heat treatment (purification factor of 3.5, enzyme activity remained almost constant) to reach the maximum activity and stability within an alkaline pH range of 7.2–11.0. The optimum temperature and stability over a 120 min period were found to be at 55°C and at 35–45°C, respectively. The proteases’ activity was not affected by a 1 vol. % saponin surfactant, inactivated by 0.01 g mL?1 sodium dodecylsulphate after 120 min, and it remained stable for 30 min in a 5 vol. % and 10 vol. % hydrogen peroxide solutions. The proteases were slightly activated by Ca2+, Mg2+, and K+ and the substrate most effectively hydrolysed was casein (40.0 U mg?1). A 24 full factorial design used to evaluated the influence of independent variables showed that the enzyme extract, detergent concentration and the incubation time had a significant influence on the enzymatic activity. The best conditions to be used concerning detergent additive were found with 0.3 mg mL?1 of protein and 3.0 mg mL?1 of detergent for 30 min in the presence of Astrus® detergent.  相似文献   

11.

Background

Generally, proteases in medicinal plants had different therapeutic effects such as anti-inflammatory effect; modulate the immune response and inhibitory effect toward tumor growth. In this study, protease was purified and characterized from miswak roots, as medicinal plant and natural toothbrush.

Results

Physical and chemical characterization of cysteine protease P1 were studied such as pH optimum (6.5), optimum temperature (50?°C), thermal stability (50?°C) and Km (3.3?mg azocasein/ml). The enzyme digested some proteins in the order of caseine > haemoglobin > egg albumin >gelatin > bovine serum albumin. Hg2+ had strong inhibitory effect on enzyme activity compared with other metal ions. Kinetic of inhibition for determination the type of protease was studied. Iodoactamide and p-Hydroximercuribenzaoic acid (p-HMB) caused strong inhibitory effect on enzyme activity indicating the enzyme is cysteine protease.

Conclusions

The biochemical characterization of this enzyme will be display the suitable conditions for using of this enzyme in toothpaste in the future and the enzyme may be used in other applications.
  相似文献   

12.
Bacteria of genus Bacillus are active producers of extracellular proteases, and characteristics of enzyme production by Bacillus species have been well studied. The aim of this experimental study is isolation and partial purification of protease enzyme from the Bacillus subtilis megatherium bacteria species. Protease enzyme is obtained by inducing spore genesis of bacteria from Bacillus species on suitable media. The partial purification was reali-zed by applying successively ammonium sulfate precipitation, dialysis, DEAE-cellulose ion exchange chromatography to the supernatant. In this study, the effect of substrate concentration, reaction time, the effect of inhibitor and activator on the optimum pH, optimum temperature, pH stability, and temperature stability was determined. Molecular weight of the obtained enzyme was investigated by SDS-PAGE. In this study, the specific activity of the supernatant, which was partially purified from Bacillus subtilis megatherium bacteria, was 10.4 U/mg, specific activity of supernatant was 13.5 U/mg after 80% ammonium sulfate fractionation. The final enzyme preparation was 1.1-fold purer than the crude homogenate. Molecular weight of the protease was determined, and it was found that the weight of enzyme was 45 kDa by using SDS-PAGE.  相似文献   

13.
Protease A has been isolated in the homogeneous state from dormant seeds of cotton plants of the Tashkent-I variety. A scheme is proposed for the isolation and purification of the enzyme which includes the following stages: extraction of the defatted seeds with 0.1 M phosphate buffer, pH 7.4; precipitation of the protein with ammonium sulfate at 60% saturation; desalting by dialysis; and ionexchange chromatography on a column containing CM- and DEAE-celluloses. The molecular weight of the enzyme has been determined as 60,000. The enzyme efficiently hydrolyzes azocasein and the 7S and 11S reserve proteins of cotton seeds. Its maximum activity appears at pH 6.4–7.4 and a temperature of 35–40°C; it is not activated by sulfhydryl reagents and loses its activity in the presence of diisopropyl phosphorofluoridate. The assumption is made that protease A belongs to the serine type of trypsin-like proteases.Institute of the Chemistry of Plant Substances, Academy of Sciences of the Uzbek SSR, Tashkent. Translated from Khimiya Prirodnykh Soedinenii, No. 6, pp. 738–741, November–December, 1986.  相似文献   

14.
The increased additive amount of adjuncts in the raw materials of Chinese beer requires the usage of protease to release more water-soluble proteins. Here, a metallo-neutral protease suited for brewing industry was purified from Bacillus amyloliquefaciens SYB-001. A 5.6-fold purification of the neutral protease was achieved with a 4-step procedure including ammonium sulfate precipitation, ion-exchange, hydrophobic interaction, and gel-filtration chromatography. The molecular mass of the enzyme was estimated to be 36.8 kDa. The protease was active and stable at a wide range of pH from 6.0–10.0 with an optimum at pH 7.0. The highest activity of the purified enzyme was found at 50 °C. The existence of manganese ion would specifically enhance the protease activity. Comparing with other commercial neutral proteases in China, adding the new neutral protease during mashing process would release more amino acids from wort such as aspartic acid, arginine, methione, and histidine, resulting in a better amino acid profile in wort. Moreover, the wort processed with the new neutral protease had a higher α-amino nitrogen concentration, which would ensure a vigorous yeast growth and better flavor. The study of the enzyme could lay a foundation for its industrial application and further research.  相似文献   

15.
Zingipain, a Ginger Protease with Acetylcholinesterase Inhibitory Activity   总被引:1,自引:0,他引:1  
In order to search for new acetylcholinesterase inhibitors (AChEIs), 15 Zingiberaceae plants were tested for AChEI activity in rhizome extracts. The crude homogenate and ammonium sulfate cut fraction of Zingiber officinale contained a significant AChEI activity. Eighty percent saturation ammonium sulfate precipitation and diethylaminoethyl cellulose ion exchange chromatography (unbound fraction) enriched the protein to a single band on nondenaturing and reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis (approximately 33.5 kDa). Gelatin-degrading zymography showed that the AChEI-containing band also contained cysteine protease activity. The AChEI activity was largely stable between ?20 and 60 °C (at least over 120 min) and over a broad pH range (2–12). The AChEI activity was stimulated strongly by Mn2+ and Cu2+ at 1–10 mM and weakly by Ca2+, Fe2+, Mg2+, and Zn2+ at 1 mM, but was inhibited at 10 mM. In contrast, Hg2+ and ethylenediaminetetraacetic acid were very and moderately strongly inhibitory, respectively. In-gel tryptic digestion with liquid chromatography–tandem mass spectroscopy resolution revealed two heterogeneous peptides, a 16-amino-acid-long fragment with 100 % similarity to zingipain-1, which is a cysteine protease from Z. officinale, and a 9-amino-acid-long fragment that was 100 % identical to actinidin Act 2a, suggesting that the preparation was heterogeneous. AChEI exhibited noncompetitive inhibition of AChE for the hydrolysis of acetylthiocholine iodide with a K i value of 9.31 mg/ml.  相似文献   

16.
A cyclomaltodextrin glucanotransferase (E.C. 2.4.1.19) from a newly isolated alkalophilic and moderately thermophilic Paenibacillus campinasensis strain H69-3 was purified as a homogeneous protein from culture supernatant. Cyclomaltodextrin glucanotransferase was produced during submerged fermentation at 45 degrees C and purified by gel filtration on Sephadex G50 ion exchange using a Q-Sepharose column and ion exchange using a Mono-Q column. The molecular weight of the purified enzyme was 70 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the pI was 5.3. The optimum pH for enzyme activity was 6.5, and it was stable in the pH range 6.0-11.5. The optimum temperature was 65 degrees C at pH 6.5, and it was thermally stable up to 60 degrees C without substrate during 1 h in the presence of 10 mM CaCl(2). The enzyme activity increased in the presence of Co(2+), Ba(2+), and Mn(2+). Using maltodextrin as substrate, the K(m) and K(cat) were 1.65 mg/mL and 347.9 micromol/mg x min, respectively.  相似文献   

17.
The main objective of the current study was the extraction, purification, and biochemical characterization of a protein protease inhibitor from Conyza dioscoridis. Antimicrobial potential and cytotoxic effects were also examined. The protease inhibitor was extracted in 0.1 M phosphate buffer (pH 6–7). Then, the protease inhibitor, named PDInhibitor, was purified using ammonium sulfate precipitation followed by filtration through a Sephadex G-50 column and had an apparent molecular weight of 25 kDa. The N-terminal sequence of PDInhibitor showed a high level of identity with those of the Kunitz family. PDInhibitor was found to be active at pH values ranging from 5.0 to 11.0, with maximal activity at pH 9.0. It was also fully active at 50 °C and maintained 90% of its stability at over 55 °C. The thermostability of the PDInhibitor was clearly enhanced by CaCl2 and sorbitol, whereas the presence of Ca2+ and Zn2+ ions, Sodium taurodeoxycholate (NaTDC), Sodium dodecyl sulfate (SDS), Dithiothreitol (DTT), and β-ME dramatically improved the inhibitory activity. A remarkable affinity of the protease inhibitor with available important therapeutic proteases (elastase and trypsin) was observed. PDInhibitor also acted as a potent inhibitor of commercial proteases from Aspergillus oryzae and of Proteinase K. The inhibitor displayed potent antimicrobial activity against gram+ and gram- bacteria and against fungal strains. Interestingly, PDInhibitor affected several human cancer cell lines, namely HCT-116, MDA-MB-231, and Lovo. Thus, it can be considered a potentially powerful therapeutic agent.  相似文献   

18.
The activity and kinetic stability of a keratinolytic subtilisin-like protease from Bacillus sp. P45 was investigated in 100 mM Tris-HCl buffer (pH 8.0; control) and in buffer with addition of Ca(2+) or Mg(2+) (1-10 mM), at different temperatures. Addition of 3 mM Ca(2+) or 4 mM Mg(2+) resulted in a 26% increment on enzyme activity towards azocasein when compared to the control (100%; without added Ca(2+) or Mg(2+)) at 55 °C. Optimal temperature for activity in the control (55 °C) was similar with Mg(2+); however, temperature optimum was increased to 60 °C with 3 mM Ca(2+), displaying an enhancement of 42% in comparison to the control at 55 °C. Stability of protease P45 in control buffer and with Mg(2+) addition was assayed at 40-50 °C, and at 55-62 °C with Ca(2+) addition. Data were fitted to six kinetic inactivation models, and a first-order equation was accepted as the best model to describe the inactivation of protease P45 with and without metal ions. The kinetic and thermodynamic parameters obtained showed the crucial role of calcium ions for enzyme stability. As biocatalyst stability is fundamental for commercial/industrial purposes, the stabilising effect of calcium could be exploited aiming the application of protease P45 in protein hydrolysis.  相似文献   

19.
An extracellular gelatinolytic enzyme obtained from the newly isolated Bacillus subtilis JB1, a thermophilic microorganism relevant to the aerobic biodegradation process of fish-meal production, was purified via ammonium sulfate precipitation, Sephadex G-200 Gel filtration chromatography, and one-dimensional gel electrophoresis separation and subsequently identified via peptide mass fingerprinting and chemically assisted fragmentation matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The subtilisin JB1 gene was sequenced and its recombinant protein prosubtilisin JB1 was expressed in Escherichia coli, and the purified prosubtilisin JB1 (62 kDa) protein was digested with gelatin, bovine serum albumin, azocasein, fibrinogen, and the fluorogenic peptide substrate Ala-Ala-Phe-7-amido-4-methylcoumarin hydrochloride, whereas the serine protease inhibitors phenylmethylsulfonyl fluoride and chymostatin completely inhibited its enzyme activity at an optimal pH of 7.5. Thus, our results show that subtilisin JB1 may serve as a potential source material for use in industrial applications of proteolytic enzymes and microorganisms for fishery waste degradation and fish by-product processing.  相似文献   

20.
Alpha-glucosidase inhibitors (aGIs) have potential use as antidiabetic drugs for the treatment of type II diabetes. Most aGIs place a burden on the liver and cause gastrointestinal distress, therefore the development of new aGIs has become very important. In this study, we investigated the production of aGIs by the co-culture of Bacillus mycoides TKU040 and Rhizobium sp. TKU041 using shrimp head powder (SHP) as the sole source of carbon and nitrogen. After fermentation in 50 mL of 1% SHP-containing medium (0.1% K2HPO4 and 0.05% MgSO4·7H2O, pH 9.2) at 37 °C for 4 days, the maximum productivity of aGIs (143 U/mL) was reached. The IC50 of the aGIs produced in the culture supernatant was 3 mg/mL. The aGI activity was only 60% after treatment at pH 3 for 30 min; this increased to 140% after treatment at pH 11 for 30 min. The aGI activity remained at 60% after treatment at 60 °C for 30 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号