首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The contact recombination from both singlet and triplet states of a radical pair is studied assuming that the spin conversion is carried out by the fast transversal relaxation and Delta g mechanism. The alternative HFI mechanism is neglected as being much weaker in rather large magnetic fields. The magnetic-field-dependent quantum yields of the singlet and triplet recombination products, as well as of the free radical production, are calculated for any initial spin state and arbitrary separation of radicals in a pair. The magnetic field effect is traced and its diffusional (viscosity) dependence is specified.  相似文献   

2.
The double-channel recombination and separation of the photochemically created singlet radical pair is investigated, taking into account the spin conversion in a zero magnetic field and the arbitrary initial distance between the radicals. The quantum yields of the singlet and triplet products and the free radicals production are found analytically, assuming that the recombination of the diffusing radicals occurs at contact. All the yields are related to the singlet and triplet populations of the recombining radical pair, subjected to spin conversion and contact exchange interaction. The general analytical expressions for the quantum yields are specified for the particular limits of the weak and strong exchange. They are greatly simplified in the case of polar solvents, especially at the contact start. A close similarity is obtained with the results of a previously developed incoherent model of spin conversion, provided that the conversion rate is appropriately related to the hyperfine coupling constant.  相似文献   

3.
The time dependence of the magnetic field effect on radical recombination in solution has been analyzed experimentally and theoretically. For the geminate recombination of anthracene anions and dimethylaniline cations in a polar solvent, the effect originates from a magnetic field dependent production of triplet states in an initially singlet phased radical pair, induced by hyperfine interaction of the unpaired electrons with the nuclei. The magnetic field dependence of the triplet yield shows a lifetime broadening of the energy levels of the radical pair if a short delay-time between radical production and triplet observation is chosen. The agreement of this delay-time dependent broadening effect with the theoretical results proves directly the coherence of the spin motion in the radical pairs.  相似文献   

4.
The use of magnetic field effects in delayed fluorescence (DF) and electrogenerated chemiluminescence (ECL) studies to obtain information about the involvement of triplet state species in reactions leading to the production of monomeric and dimeric (excimer or exciplex) excited states is described. In the room temperature DF of pyrene and 1,2-benzanthracene, identical field effects are observed for monomer and excimer emission, in agreement with a mechanism involving a common intermediate produced on triplet-triplet annihilation (TTA), and different than previous DF results for 1,2-benzanthracene solutions at low temperatures. The ECL of the pyrene/N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) system also shows monomer and excimer emissions identically affected by magnetic field and in agreement with an ECL mechanism involving TTA. In the ECL of the S-methylanthracene (MA)/tri-p-tolylamine (TPTA) system, a field effect is observed for both the 1MA* and longer wavelength emission. In this case, however, a smaller effect is observed for the longer wavelength emission. A mechanism based on TTA to form 1MA* and some direct formation of exciplex on electron transfer is proposed.  相似文献   

5.
6.
In tetracene doped anthracene, the magnetic field modulation of prompt tetracene fluorescence following excitation into the anthracene singlet manifold has been measured as a function of the magnetic field orientation and optical excitation energy. The results show that this modulation with low energy excitation is caused by singlet heterofission into one anthracene triplet exciton and one tetracene triplet. With higher excitation energies this modulation is due to both the singlet heterofission and also singlet homofission into a pair of anthracene triplet excitons. Heterofission occurs mainly from anthracene molecules next to a tetracene and competes with the singlet trapping. From the singlet trapping rate and from the magnetic modulation of tetracene prompt fluorescence the heterofission rate is estimated as ≈10?11s?1.  相似文献   

7.
Abstract— Application of a static external magnetic field (3350 G) during UV-irradiation (>300 nm) reduced the time for 50% photohemolysis of human erythrocytes by the phototoxic drug ketoprofen (3-benzoyl-α-methylbenzoacetic acid) from 96 min to 78 min. This observation can be attributed to a magnetic field induced decrease in the rate of intersystem crossing (kISC) of the geminate triplet radical pair generated by the reduction of ketoprofen in its triplet excited state by erythrocyte membrane constituents, probably lipids. The decrease in kJSC results in an increase in the concentration and/or lifetime of free radicals that escape from the triplet radical pair. Thus the critical radical concentration needed to cause membrane damage and cell lysis is reached sooner in the presence of the magnetic field. In contrast, the photohemolysis induced by the photodynamic agent protoporphyrin IX was not affected by the magnetic field. Protoporphyrin IX photohemolysis, which is initiated by singlet oxygen, does not involve the initial generation of a triplet radical pair and so is not influenced by the magnetic field. The enhancement of ketoprofen-induced photohemolysis by an externally applied magnetic field is the first example of a magnetic field effect on a toxicological process involving free radicals.  相似文献   

8.
Reversible emission color switching of triplet–triplet annihilation‐based photon upconversion (TTA‐UC) is achieved by employing an Os complex sensitizer with singlet‐to‐triplet (S‐T) absorption and an asymmetric luminescent cyclophane with switchable emission characteristics. The cyclophane contains the 9,10‐bis(phenylethynyl)anthracene unit as an emitter and can assemble into two different structures, a stable crystalline phase and a metastable supercooled nematic phase. The two structures exhibit green and yellow fluorescence, respectively, and can be accessed by distinct heating/cooling sequences. The hybridization of the cyclophane with the Os complex allows near‐infrared‐to‐visible TTA‐UC. The large anti‐Stokes shift is possible by the direct S‐T excitation, which dispenses with the use of a conventional sequence of singlet–singlet absorption and intersystem crossing. The TTA‐UC emission color is successfully switched between green and yellow by thermal stimulation.  相似文献   

9.
The temperature dependence of spin-selective intramolecular charge recombination (CR) in a series of 2,7-fluorenone (FN(1-2)) and p-phenylethynylene (PE(1-2)P) linked donor-bridge-acceptor molecules with a 3,5-dimethyl-4-(9-anthracenyl) julolidine (DMJ-An) electron donor and a naphthalene-1,8:4,5-bis(dicarboximide) (NI) acceptor was studied using nanosecond transient absorption spectroscopy in the presence of a static magnetic field. Photoexcitation of DMJ-An into its charge transfer band and subsequent electron transfer to NI results in a nearly quantitative yield of (1)(DMJ(+?)-An-FN(n)-NI(-?)) and (1)(DMJ(+?)-An-PE(n)P-NI(-?)), which undergo rapid radical pair intersystem crossing (RP-ISC) to produce the triplet RPs, (3)(DMJ(+?)-An-FN(n)-NI(-?)) and (3)(DMJ(+?)-An-PE(n)P-NI(-?)), respectively. The CR rate constants, k(CR), in toluene were measured over a temperature range from 270 to 350 K, and a kinetic analysis of k(CR) in the presence of an applied static magnetic field was used to extract the singlet and triplet charge recombination rate constants, k(CRS) and k(CRT), respectively, as well as the intersystem crossing rate constant, k(ST). Plots of ln (kT(1/2)) versus 1/T for PE(1)P show a distinct crossover at 300 K from a temperature-independent singlet CR pathway to a triplet CR pathway that is positively activated with a barrier of 1047 ± 170 cm(-1). The singlet CR pathway via the FN(1) bridge displays a negative activation energy that results from donor-bridge and bridge-acceptor torsional motions about the single bonds joining them. In contrast, the triplet CR pathway via the FN(1-2) and PE(1-2)P bridges exhibits positive activation energies. The activation barriers to these torsional motions range from 1100 to 4500 cm(-1) and can be modeled by semiclassical electron transfer theory.  相似文献   

10.
The magnetic field (H ≈ 50 Oe) dependence of the rhodamine sensitized triplet exciton density in anthracene crystals is influenced by isotopic substitution. This confirms the hyperfine interaction as mechanism explaining the change of the spin multiplicity in the initially formed singlet state of the radical pair. The isotope effect occurs in the sensitizing dye (14N/15N) rather than at the molecular site of the injected charge within the crystal. This can be understood in terms of the high hopping frequency of the charge carriers as compared to the time constant of the hyperfine induced singlet-triplet transition. Since the dye molecules adsorb in an oriented fashion, the angular dependence of the magnetic field modulation of the triplet exciton density can be interpreted without assuming any additional interactions.  相似文献   

11.
Photo-CIDNP (photochemically induced dynamic nuclear polarization) can be observed in frozen and quinone-blocked photosynthetic reaction centers (RCs) as modification of magic-angle spinning (MAS) NMR signal intensity under illumination. Studying the carotenoidless mutant strain R26 of Rhodobacter sphaeroides, we demonstrate by experiment and theory that contributions to the nuclear spin polarization from the three-spin mixing and differential decay mechanism can be separated from polarization generated by the radical pair mechanism, which is partially maintained due to differential relaxation (DR) in the singlet and triplet branch. At a magnetic field of 1.4 T, the latter contribution leads to dramatic signal enhancement of about 80,000 and dominates over the two other mechanisms. The DR mechanism encodes information on the spin density distribution in the donor triplet state. Relative peak intensities in the photo-CIDNP spectra provide a critical test for triplet spin densities computed for different model chemistries and conformations. The unpaired electrons are distributed almost evenly over the two moieties of the special pair of bacteriochlorophylls, with only slight excess in the L branch.  相似文献   

12.
Calculations of the time evolution of the population in the transient radical pair PF state and the magnetic field dependence of the effective decay time are presented. A general treatment is proposed to include (1) unequal decay rates kT and kS for the triplet and the singlet, (2) the anisotropic electron — electron dipolar interaction and (3) the multiple nuclear hyperfine interaction. It is found that the dipolar interaction and the exchange interaction have a strong impact on the field dependence of the effective decay time. In addition, the time evolution of the PF population is found to be quasi-exponential for kT >k5, and the effective decay rate is determined much more by the singlet decay rate that the triplet decay rate as long as dominant spin-spin interactions are present. The decay curve becomes non-exponential as kS becomes larger than kT.  相似文献   

13.
Triplet-triplet annihilation (TTA) is a spin-allowed conversion of two triplet states into one singlet excited state, which provides an efficient route to generate a photon of higher frequency than the incident light. Multiple energy transfer steps between absorbing (sensitizer) and emitting (annihilator) molecular species are involved in the TTA based photon upconversion process. TTA compounds have recently been studied for solar energy applications, even though the maximum upconversion efficiency of 50 % is yet to be achieved. With the aid of quantum calculations and based on a few key requirements, several design principles have been established to develop the well-functioning annihilators. However, a complete molecular level understanding of triplet fusion dynamics is still missing. In this work, we have employed multi-reference electronic structure methods along with quantum dynamics to obtain a detailed and fundamental understanding of TTA mechanism in naphthalene. Our results suggest that the TTA process in naphthalene is mediated by conical intersections. In addition, we have explored the triplet fusion dynamics under the influence of strong light-matter coupling and found an increase of the TTA based upconversion efficiency.  相似文献   

14.
We investigate singlet fission (SF) in heterodimers comprising a pentacene unit covalently bonded to another acene as we systematically vary the singlet and triplet pair energies. We find that these energies control the SF process, where dimers undergo SF provided that the resulting triplet pair energy is similar or lower in energy than the singlet state. In these systems the singlet energy is determined by the lower‐energy chromophore, and the rate of SF is found to be relatively independent of the driving force. However, triplet pair recombination in these heterodimers follows the energy gap law. The ability to tune the energies of these materials provides a key strategy to study and design new SF materials—an important process for third‐generation photovoltaics.  相似文献   

15.
《Tetrahedron》1986,42(22):6131-6142
Intramiceller radical pair formation and recombination kinetics in the electron transfer quenching of the thiomine triplet by aniline and various monohalogenated anilines have been studied by micro-second and nanosecond laser flash spectroscopy in reversed micellar solution of CDBA in benzene. Clear kinetic evidence of the micellar cage effect is provided by a comparative spectro-kinetical study in homogeneous aqueous and reversed micellar solution. In zero magnetic field the radical pairs which originate wrth a triplet spin alignment recombine in the waterpools of the micelles with a rate constant of about 3 × 106s-1 which is not sensitive to the hyperftue or spin-orbit coupling parameters of the aniline-type radical. Long lived radicals are formed by radical escape from the micelles occurring with a rate constant in the-order of 2 × 106s-1 and being insensitive to an external magnetic field. Intramicellar radical pair recombination is slowed down by an external magnetic field. A maximum effect (measured at 1 T) of a factor of 3 is observed for non-halogenated anilines. Halogen substituation attenuates this magnetic-field effect depending on the strength of spin-orbit coupling exhibited by the halogen substituent. The magnetic-field effect is interpreted in terms of the radical pair mechanism with special emphasis on the role of spin relaxation. Suppression of the magnetic-field effect by halogen substituents is attributed to the spin-rotational relaxation mechanism which is independent of a magnetic field. A heavy-atom suhstituent effect is also borne out in the primary yield of radical pairs which is decreased in the same way as in homogeneous solution. This is atttributed to the role of a triplet exciplex formed as a precursor of the radical pair, where heavy atom substitueuts cause very efficient rediationless decay to the ground state. A magnetic-field effect typical for the triplet mechanism in the exciplex has been detectable with 4-iodoaniline as quencher.  相似文献   

16.
We have recently demonstrated the existence of exceptionally long-lived nuclear spin states in solution-state nuclear magnetic resonance. The lifetime of nuclear spin singlet states in systems containing coupled pairs of spins-12 may exceed the conventional relaxation time constant T1 by more than an order of magnitude. These long lifetimes may be observed if the long-lived singlet states are prevented from mixing with rapidly relaxing triplet states. In this paper we provide the detailed theory of an experiment which uses magnetic field cycling to observe slow singlet relaxation. An approximate expression is given for the magnetic field dependence of the singlet relaxation rate constant, using a model of intramolecular dipole-dipole couplings and fluctuating external random fields.  相似文献   

17.
Triplet excitons in electron donor—acceptor charge-transfer (CT) molecular crystals are generated through the intersystem crossing process by excitation in the CT visible band and give rise to delayed fluorescence. Delayed-fluorescence optically detected magnetic resonance (DF ODMR) in magnetic field is analyzed in terms of microwave-induced transitions between energy levels of either the isolated triplet excitons or the annihilating triplet exciton pair. The spin polarization of the triplet excitons plays an important role in the described phenomena. A comparison between DF ODMR and EPR spectra of the anthracene—tetracyanobenzene and biphenyl—tetracyanobenzene systems is presented. In the former case the microwave transitions occurring between free exciton sublevels are predominantly responsible of the DF ODMR signal, whereas the transitions between energy levels of the exciton pair are the most important for biphenyl—TCNB.  相似文献   

18.
The mechanism of the low temperature polymerization reaction in TSHD diacetylene crystals has been investigated by the transient ESR of the paramagnetic triplet (S = 1) and quintet (S ≈ 2) reaction intermediates. The reaction schemes of the thermal and optical addition and transformation reactions after UV photoinitiation are obtained. The activation energies of the chain propagation reaction and the singlet—triplet and singlet—quintet energy separations of the different dicarbene and diradical intermediates are deduced from the experiments.  相似文献   

19.
The mechanism of eosin-sensitized photoreduction of benzil with 1-benzyl-1,4-dihydronicotinamide — a model compound of NAD(P)H and the behavior of the excited states of eosin have been investigated. The effect of anthracene as a diffusion-controlled quencher of the photoreaction indicates that both excited triplet state and an unquenchable excited singlet state of eosin participated in the sensitized photoreaction. From the Stern-Volmer plot of quantum yield vs. anthracene concentration, the triplet reaction rate constant has been calculated to be 0.78 × 108 L M?1S?1 while the singlet reaction rate constant determined from quenching of eosin fluorescence by benzil is equal to 7.2 × 109 L M?1S?1. The singlet and triplet quantum yields are also determined to be 0.09 and 0.18 respectively. Since both the singlet and triplet energies of eosin are lower than that of benzil, energy transfer sensitization is not feasible. It is proposed that electron transfer from the excited eosin to benzil is responsible for the initiation.  相似文献   

20.
The light output and the current driving tris-(8-hydroxyquinolinato) aluminum (III) (Alq3)-based light-emitting-diodes were found to increase by up to 5% and 3%, respectively, as an external magnetic field increased to 300 mT. The positive magnetic-field effects were sensitive to the applied voltage. These observations made clear that the emissive singlet exciton formation proceeds via a correlated electron–hole pair state and the excitonic injection of electrons contributes to the driving current, the concentration of singlet excitons being modulated by the hyperfine scale magnetic-field-dependent mixing of singlet and triplet pair states constituting precursors of molecular excitons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号