首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 222 毫秒
1.
We describe a novel technique combining precise organelle microextraction with deposition and matrix-assisted laser desorption/ionization (MALDI) for a rapid, minimally invasive mass spectrometry (MS) analysis of single organelles from living cells. A dual-positioner nanomanipulator workstation was utilized for both extraction of organelle content and precise co-deposition of analyte and matrix solution for MALDI-direct organelle mass spectrometry (DOMS) analysis. Here, the triacylglycerol (TAG) profiles of single lipid droplets from 3T3-L1 adipocytes were acquired and results validated with nanoelectrospray ionization (NSI) MS. The results demonstrate the utility of the MALDI-DOMS technique as it enabled longer mass analysis time, higher ionization efficiency, MS imaging of the co-deposited spot, and subsequent MS/MS capabilities of localized lipid content in comparison to NSI-DOMS. This method provides selective organellar resolution, which complements current biochemical analyses and prompts for subsequent subcellular studies to be performed where limited samples and analyte volume are of concern.
Graphical Abstract ?
  相似文献   

2.
The analytical sensitivity in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is largely affected by the specific analyte-matrix interaction, in particular by the possible incorporation of the analytes into crystalline MALDI matrices. Here we used time-of-flight secondary ion mass spectrometry (ToF-SIMS) to visualize the incorporation of three peptides with different hydrophobicities, bradykinin, Substance P, and vasopressin, into two classic MALDI matrices, 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (HCCA). For depth profiling, an Ar cluster ion beam was used to gradually sputter through the matrix crystals without causing significant degradation of matrix or biomolecules. A pulsed Bi3 ion cluster beam was used to image the lateral analyte distribution in the center of the sputter crater. Using this dual beam technique, the 3D distribution of the analytes and spatial segregation effects within the matrix crystals were imaged with sub-μm resolution. The technique could in the future enable matrix-enhanced (ME)-ToF-SIMS imaging of peptides in tissue slices at ultra-high resolution.
Graphical Abstract ?
  相似文献   

3.
Electrospray ionization mass spectrometry (ESI-MS) is nowadays one of the cornerstones of biomolecular mass spectrometry and proteomics. Advances in sample preparation and mass analyzers have enabled researchers to extract much more information from biological samples than just the molecular weight. In particular, relevant for structural biology, noncovalent protein–protein and protein–ligand complexes can now also be analyzed by MS. For these types of analyses, assemblies need to be retained in their native quaternary state in the gas phase. This initial small niche of biomolecular mass spectrometry, nowadays often referred to as “native MS,” has come to maturation over the last two decades, with dozens of laboratories using it to study mostly protein assemblies, but also DNA and RNA-protein assemblies, with the goal to define structure–function relationships. In this perspective, we describe the origins of and (re)define the term native MS, portraying in detail what we meant by “native MS,” when the term was coined and also describing what it does (according to us) not entail. Additionally, we describe a few examples highlighting what native MS is, showing its successes to date while illustrating the wide scope this technology has in solving complex biological questions.
Graphical Abstract ?
  相似文献   

4.
The ability to visualize biochemical interactions between microbial communities using MALDI MSI has provided tremendous insights into a variety of biological fields. Matrix application using a sieve proved to be incredibly useful, but it has many limitations that include uneven matrix coverage and limitation in the types of matrices that could be employed in studies. Recently, there has been a concerted effort to improve matrix application for studying agar plated microbial cultures, many of which utilized automated matrix sprayers. Here, we describe the usefulness of using a robotic sprayer for matrix application. The robotic sprayer has two-dimensional control over where matrix is applied, and a heated capillary that allows for rapid drying of the applied matrix. This method provided a significant increase in MALDI sensitivity over the sieve method, as demonstrated by FT-ICR MS analysis, facilitating the ability to gain higher lateral resolution MS images of Bacillus subtilis than previously reported. This method also allowed for the use of different matrices to be applied to the culture surfaces.
Graphical Abstract ?
  相似文献   

5.
Mixtures of pollen grains of three different species (Corylus avellana, Alnus cordata, and Pinus sylvestris) were investigated by matrix-assisted laser desorption/ionization time-of-flight imaging mass spectrometry (MALDI-TOF imaging MS). The amount of pollen grains was reduced stepwise from >?10 to single pollen grains. For sample pretreatment, we modified a previously applied approach, where any additional extraction steps were omitted. Our results show that characteristic pollen MALDI mass spectra can be obtained from a single pollen grain, which is the prerequisite for a reliable pollen classification in practical applications. MALDI imaging of laterally resolved pollen grains provides additional information by reducing the complexity of the MS spectra of mixtures, where frequently peak discrimination is observed. Combined with multivariate statistical analyses, such as principal component analysis (PCA), our approach offers the chance for a fast and reliable identification of individual pollen grains by mass spectrometry.
Graphical Abstract ?
  相似文献   

6.
In this work, we present the detection sensitivity improvement of electrospray ionization (ESI) mass spectrometry of neutral saccharides in a positive ion mode by the addition of various amino acids. Saccharides of a broad molecular weight range were chosen as the model compounds in the present study. Saccharides provide strong noncovalent interactions with amino acids, and the complex formation enhances the signal intensity and simplifies the mass spectra of saccharides. Polysaccharides provide a polymer-like ESI spectrum with a basic subunit difference between multiply charged chains. The protonated spectra of saccharides are not well identified because of different charge state distributions produced by the same molecules. Depending on the solvent used and other ions or molecules present in the solution, noncovalent interactions with saccharides may occur. These interactions are affected by the addition of amino acids. Amino acids with polar side groups show a strong tendency to interact with saccharides. In particular, serine shows a high tendency to interact with saccharides and significantly improves the detection sensitivity of saccharide compounds.
Graphical Abstract ?
  相似文献   

7.
Measurement of glycated hemoglobin is widely used for the diagnosis and monitoring of diabetes mellitus. Matrix assisted laser desorption/ionization (MALDI) time of flight (TOF) mass spectrometry (MS) analysis of patient samples is used to demonstrate a method for quantitation of total glycation on the β-subunit of hemoglobin. The approach is accurate and calibrated with commercially available reference materials. Measurements were linear (R2 > 0.99) across the clinically relevant range of 4% to 20% glycation with coefficients of variation of ≤ 2.5%. Additional and independent measurements of glycation of the α-subunit of hemoglobin are used to validate β-subunit glycation measurements and distinguish hemoglobin variants. Results obtained by MALDI-TOF MS were compared with those obtained in a clinical laboratory using validated HPLC methodology. MALDI-TOF MS sample preparation was minimal and analysis times were rapid making the method an attractive alternative to methodologies currently in practice.
Graphical Abstract ?
  相似文献   

8.
Native mass spectrometry (MS) has become a valuable tool in probing noncovalent protein–ligand interactions in a sample-efficient way, yet the quantitative application potential of native MS has not been fully explored. Cellular retinol binding protein, type I (CrbpI) chaperones retinol and retinal in the cell, protecting them from nonspecific oxidation and delivering them to biosynthesis enzymes where the bound (holo-) and unbound (apo-) forms of CrbpI exert distinct biological functions. Using nanoelectrospray, we developed a native MS assay for probing apo- and holo-CrbpI abundance to facilitate exploring their biological functions in retinoid metabolism and signaling. The methods were developed on two platforms, an Orbitrap-based Thermo Exactive and a Q-IMS-TOF-based Waters Synapt G2S, where similar ion behaviors under optimized conditions were observed. Overall, our results suggested that within the working range (~1–10 μM), gas-phase ions in the native state linearly correspond to solution concentration and relative ion intensities of the apo- and holo-protein ions can linearly respond to the solution ratios, suggesting native MS is a viable tool for relative quantitation in this system.
Graphical Abstract ?
  相似文献   

9.
Calibrants based on synthetic dendrimers have been recently proposed as a versatile alternative to peptides and proteins for both MALDI and ESI mass spectrometry calibration. Because of their modular synthetic platform, dendrimer calibrants are particularly amenable to tailoring for specific applications. Utilizing this versatility, a set of dendrimers has been designed as an internal calibrant with a tailored mass defect to differentiate them from the majority of natural peptide analytes. This was achieved by incorporating a tris-iodinated aromatic core as an initiator for the dendrimer synthesis, thereby affording multiple calibration points (m/z range 600–2300) with an optimized mass-defect offset relative to all peptides composed of the 20 most common proteinogenic amino acids.
Graphical abstract ?
  相似文献   

10.
Matrix-assisted laser desorption ionization (MALDI) time-of-flight mass spectrometry (TOF MS) is now accepted as a quick, easy-to-use, cost-effective, and accurate technique for the identification of microorganisms. However, the successful identification of microorganisms is dependent upon careful attention to factors such as growth conditions, extraction methods, mass spectral data collection, and data analysis procedures. Currently, most microorganism identification has been limited to the species level, and only a limited number of publications have been successful in achieving strain-level identification. In this work, a “cell-free” approach is introduced where peptide analytes secreted by several Saccharomyces cerevisiae strains during their growth period are analyzed. The analysis of the cell supernatant generates mass spectral patterns that are specific to each strain. The patterns generated in combination with a robust data analysis workflow using the open-source programs MALDIquant and Mass-Up allows for strain-level identification of S. cerevisiae. The cell-free approach using the yeast supernatant to accurately identify yeast strains is presented here as a proof of concept.
Graphical Abstract
  相似文献   

11.
Immonium ions are commonly observed in the high energy fragmentation of peptide ions. In a MALDI-TOF/TOF mass spectrometer, singly charged peptides photofragmented with 157 nm VUV light yield a copious abundance of immonium ions, especially those from aromatic residues. However, their intensities may vary from one peptide to another. In this work, the effect of varying amino acid position, peptide length, and peptide composition on immonium ion yield is investigated. Internal immonium ions are found to have the strongest intensity, whereas immonium ions arising from C-terminal residues are the weakest. Peptide length and competition among residues also strongly influence the immonium ion production. Quantum calculations provide insights about immonium ion structures and the fragment ion conformations that promote or inhibit immonium ion formation.
Graphical Abstract ?
  相似文献   

12.
Mass spectrometry continues to tackle many complicated tasks, and ongoing research seeks to simplify its instrumentation as well as sampling. The desorption electrospray ionization (DESI) source was the first ambient ionization source to function without extensive gas requirements and chromatography. Electrospray techniques generally have low efficiency for ionization of nonpolar analytes and some researchers have resorted to methods such as direct analysis in real time (DART) or desorption atmospheric pressure chemical ionization (DAPCI) for their analysis. In this work, a carbon nanotube fiber ionization (nanoCFI) source was developed and was found to be capable of solid phase microextraction (SPME) of nonpolar analytes as well as ionization and sampling similar to that of direct probe atmospheric pressure chemical ionization (DP-APCI). Conductivity and adsorption were maintained by utilizing a corona pin functionalized with a multi-walled carbon nanotube (MWCNT) thread. Quantitative work with the nanoCFI source with a designed corona discharge pin insert demonstrated linearity up to 0.97 (R2) of three target PAHs with phenanthrene internal standard.
Graphical Abstract ?
  相似文献   

13.
Peptides with deamidated asparagine residues and oxidized methionine residues are often not resolved sufficiently to allow quantitation of their native and modified forms using reversed phase (RP) chromatography. The accurate quantitation of these modifications is vital in protein biotherapeutic analysis because they can affect a protein’s function, activity, and stability. We demonstrate here that hydrophilic interaction liquid chromatography (HILIC) adequately and predictably separates peptides with these modifications from their native counterparts. Furthermore, coefficients describing the extent of the hydrophilicity of these modifications have been derived and were incorporated into a previously made peptide retention prediction model that is capable of predicting the retention times of peptides with and without these modifications.
Graphical Abstract ?
  相似文献   

14.
Membrane protein complexes are commonly introduced to the mass spectrometer solubilized in detergent micelles. The collisional activation used to remove the detergent, however, often causes protein unfolding and dissociation. As in the case for soluble proteins, electrospray in the positive ion mode is most commonly used for the study of membrane proteins. Here we show several distinct advantages of employing the negative ion mode. Negative polarity can yield lower average charge states for membrane proteins solubilized in saccharide detergents, with enhanced peak resolution and reduced adduct formation. Most importantly, we demonstrate that negative ion mode electrospray ionization (ESI) minimizes subunit dissociation in the gas phase, allowing access to biologically relevant oligomeric states. Together, these properties mean that intact membrane protein ions can be generated in a greater range of solubilizing detergents. The formation of negative ions, therefore, greatly expands the possibilities of using mass spectrometry on this intractable class of protein.
Graphical Abstract ?
  相似文献   

15.
N-acyl homoserine lactones (AHL) are small signal molecules involved in the quorum sensing of many gram-negative bacteria, and play an important role in biofilm formation and pathogenesis. Present analytical methods for identification and quantification of AHL require time-consuming sample preparation steps and are hampered by the lack of appropriate standards. By aiming at a fast and straightforward method for AHL analytics, we investigated the applicability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Suitable MALDI matrices, including crystalline and ionic liquid matrices, were tested and the fragmentation of different AHL in collision-induced dissociation MS/MS was studied, providing information about characteristic marker fragments ions. Employing small-scale synthesis protocols, we established a versatile and cost-efficient procedure for fast generation of isotope-labeled AHL standards, which can be used without extensive purification and yielded accurate standard curves. Quantitative analysis was possible in the low pico-molar range, with lower limits of quantification reaching from 1 to 5 pmol for different AHL. The developed methodology was successfully applied in a quantitative MALDI MS analysis of low-volume culture supernatants of Pseudomonas aeruginosa.
Graphical abstract ?
  相似文献   

16.
This is the first study where graphene is used as a MALDI adjuvant in combination with the traditional matrix α-cyano-4-hydroxycinnamic acid (CHCA) to improve the signal intensity of peptide samples. Use of this amended matrix not only leads to increased signals but also to a higher number of peaks detected in complex samples. Additionally, the use of graphene has a stabilizing effect that can also be exploited to improve the detection of easily cleavable molecules.
Graphical Abstract ?
  相似文献   

17.
Mass spectroscopic investigations on tetrahydrofuran (THF, C4H8O), a common model molecule of the DNA-backbone, have been carried out. We irradiated isolated THF and (hydrated) THF clusters with low energy electrons (electron energy ~70 eV) in order to study electron ionization and ionic fragmentation. For elucidation of fragmentation pathways, deuterated TDF (C4D8O) was investigated as well. One major observation is that the cluster environment shows overall a protective behavior on THF. However, also new fragmentation channels open in the cluster. In this context, we were able to solve a discrepancy in the literature about the fragment ion peak at mass 55 u in the electron ionization mass spectrum of THF. We ascribe this ion yield to the fragmentation of ionized THF clusters.
Graphical Abstract ?
  相似文献   

18.
Ligated tetrapositive metal ions are rare gas-phase species which tend to form complexes with lower charges due to the high 4th ionization energies of metals. We report the observation of tetrapositive Zr(TMPDA)34+ and Zr(TMOGA)34+ complexes in the gas phase by electrospray ionization of Zr(ClO4)4/TMPDA and Zr(ClO4)4/TMOGA mixtures. The Zr4+ center in both complexes is coordinated by nine atoms from three neutral diamide ligands forming nine-coordinate twisted tricapped trigonal prismatic geometry on the basis of DFT calculations. Collision-induced dissociation of both complexes resulted in the loss of protonated ligands to form tripositive Zr(TMPDA)(TMPDA-H)3+ and Zr(TMOGA)(TMOGA-H)3+ products which retain the IV oxidation state of zirconium at the cost of charge reduction from 4+ to 3+ of the whole complexes. The very high 4th ionization energy of zirconium (34.34 eV) makes tetrapositive zirconium complex the most challenging tetracation to be stabilized against charge reduction in the gas phase to date.
Graphical abstract ?
  相似文献   

19.
Tubulin, which is the building block of microtubules, plays an important role in cell division. This critical role makes tubulin an attractive target for the development of chemotherapeutic drugs to treat cancer. Currently, there is no general binding assay for tubulin–drug interactions. The present work describes the application of the catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS) assay to investigate the binding of colchicinoid drugs to αβ-tubulin dimers extracted from porcine brain. Proof-of-concept experiments using positive (ligands with known affinities) and negative (non-binders) controls were performed to establish the reliability of the assay. The assay was then used to screen a library of seven colchicinoid analogues to test their binding to tubulin and to rank their affinities.
Graphical Abstract ?
  相似文献   

20.
Sample throughput in electrospray ionization mass spectrometry (ESI-MS) is limited by the need for frequent ion path cleaning to remove accumulated debris that can lead to charging and general performance degradation. Contamination of ion optics within the vacuum system is particularly problematic as routine cleaning requires additional time for cycling the vacuum pumps. Differential mobility spectrometry (DMS) can select targeted ion species for transmission, thereby reducing the total number of charged particles entering the vacuum system. In this work, we characterize the nature of instrument contamination, describe efforts to improve mass spectrometer robustness by applying DMS prefiltering to reduce contamination of the vacuum ion optics, and demonstrate the capability of DMS to extend the interval between mass spectrometer cleaning. In addition, we introduce a new approach to effectively detect large charged particles formed during the electrospray ionization (ESI) process.
Graphical Abstract ?
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号