首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
贾璐  阎守国  张碧星  黄娟 《应用声学》2022,41(2):278-284
针对非线性瑞利波在均匀分层半空间结构中的激发和传播规律进行研究。根据摄动理论和模态分解将分层半空间结构中瑞利波的二次谐波声场表示为二倍频瑞利波模式的线性组合,经由互易关系得到各模式的展开系数表达式。对不同分层半空间结构中瑞利波二次谐波的激发和传播特性进行讨论,结果表明相速度匹配的瑞利波模式其二次谐波分量随传播距离线性增长,非匹配模式的二次谐波分量则沿传播方向周期震荡传播。此外,文中定义非线性参数表征瑞利波模式产生的非线性程度,这有利于选择出具有明显非线性效应的匹配点,为后续检测工作提供理论依据,具有指导意义。  相似文献   

2.
Abstract

The problem of electromagnetic wave scattering by a slightly rough interface in an arbitrarily layered medium is solved by a small-perturbation method. The bistatic amplitude of scattering as well as the scattering cross sections for statistically rough surfaces are calculated for linear polarized waves. Along with scattering into up-going waves in a homogeneous medium and scattering cross sections in down-going waves into a layered medium, scattering amplitudes from a rough interface in the arbitrarily layered medium are obtained.  相似文献   

3.
4.
We study propagation of surface electromagnetic waves along a metallic surface covered by various layered dielectric structures. We show that strong radiative losses, typical for scattering of a surface wave, can be considerably suppressed when a single dielectric step is substituted by gradient index or periodic layered structure.  相似文献   

5.
胡珍  范军  张培珍  吴玉双 《物理学报》2016,65(6):64301-064301
水下掩埋目标声散射问题是识别和探测掩埋目标的理论基础, 是声散射研究领域的热点问题. 本文基于射线声学推导了掩埋情况下目标声散射计算的格林函数近似式, 并在此基础上进一步给出了相应的远场积分公式. 在有限元方法的基础上, 将推导得到的公式写入有限元仿真软件, 对软件功能进行拓展, 构建二维轴对称目标的声散射模型, 并计算掩埋情况下弹性实心球在不同条件下的目标强度, 获得了其散射声场随频率、掩埋深度、沙层吸收系数等参数的变化规律. 开展实心球的自由空间和浅掩埋条件下水池声散射实验, 利用共振隔离技术处理实验数据, 提取目标声散射的纯弹性共振特征进行分析, 结果表明可将其用于掩埋目标识别和探测. 最后利用总散射声场与理论计算结果进行对比, 验证了理论仿真的正确性.  相似文献   

6.
We use the Born approximation of the perturbation method to solve the problem of scattering of a harmonic Rayleigh surface acoustic wave by a weak-contrast inhomogeneity that is small compared with the wavelength and is located in a solid half-space near its boundary. The material of the inhomogeneity differs from the material of the half-space only in its density. The Rayleigh wave incident on the inhomogeneity is excited by a monochromatic surface force source acting normally to the half-space boundary. We derive expressions for the displacement fields in the scattered spherical compressional and shear (SV- and SH-polarized) waves. Scattering of the Rayleigh wave into a Rayleigh wave is studied in detail. We find expressions for the vertical and horizontal components of the displacement vector in the scattered Rayleigh wave as well as its radiated power. It is shown that the field of the scattered surface wave is mainly formed by vertical oscillations of the inhomogeneity in the field of the incident wave. In this case, the radiated power for the scattered Rayleigh wave formed by vertical motion of the inhomogeneity in the incident-wave field depends on the depth of the inhomogeneity as the fourth power of the function describing the well-known depth dependence of the vertical displacements in the Rayleigh surface wave. Correspondingly, the dependence of the radiated power for the scattered Rayleigh wave formed by horizontal motion of the inhomogeneity depends on its location depth as the fourth power of the depth dependence of the horizontal displacements in the Rayleigh surface wave. We perform calculations of the ratio between the powers of the scattered and incident Rayleigh waves for different ratios between the velocities of the compressional and shear waves in a solid. It is shown that the radiated power for the scattered surface wave decreases sharply with increasing depth of the subsurface-inhomogeneity location. Thus, the scattering of a Rayleigh wave into a Rayleigh wave is fairly efficient only when the location depth of the inhomogeneity does not exceed about one-third of the wavelength of the shear wave in an elastic medium.  相似文献   

7.
Unlike most common solids, "plastic" polymer solids typically have shear and Rayleigh wave phase velocities less than the speed of sound in water. Subsonic Rayleigh waves on smooth objects in water are not classified as leakey waves and it is necessary to reexamine backscattering mechanisms. Also the intrinsic material dissipation of the Rayleigh wave can be significant. Backscattering by acrylic or polymethlmethacrylate (PMMA) spheres in water is analyzed and measured in the region ka = 1.5-7 and it is found that prominent low-lying resonance peaks of the form function f exist. The peaks can be modeled with quantitative ray theory as the result of coupling of subsonic Rayleigh waves with sound through acoustic tunneling. The most prominent maximum of f=5.63 occurs at ka = 1.73 and is associated with the quadrupole (or n=2) partial wave. In addition to explaining the scattering, the target strength is found to be sufficiently large that such spheres may be useful for passive low frequency targets.  相似文献   

8.
Jian X  Dixon S  Guo N  Edwards RS  Potter M 《Ultrasonics》2006,44(Z1):e1131-e1134
This paper investigates Rayleigh wave interaction with machined slots on flat aluminium blocks to simulate surface breaking cracks. Using a finite element method, Rayleigh wave scattering by narrow slots of varied depth ranging from 0.5 mm to 20 mm is calculated. Pulsed wideband Rayleigh waves with a centre frequency of 590 kHz and -6 dB bandwidth of 520 kHz is considered. Reflection and transmission coefficients are calculated and compare well with the published literature. We and other workers have reported enhancement of the measured amplitude or particle velocity of an apparent Rayleigh wave close to a surface defect. In this paper, it is found that the predicted enhancement of in-plane components of particle velocities close to a crack is significantly higher than that of the out-of-plane components of particle velocities which appears to be mainly due to the mode-converted surface skimming longitudinal wave from the crack that has mainly in-plane components near the sample surface. The enhancement of the in-plane particle velocity will be observed regardless of the type of in-plane sensitive ultrasonic detector used. The explanation of the discrepancy of the reflection and transmission coefficients obtained by pulsed and narrow band or pseudo continuous Rayleigh waves is discussed. The later-arriving Rayleigh waves from reverberation along the inside of the crack surface are observed, as has been previously reported by other workers, and this may also be used to gauge slot depth.  相似文献   

9.
Combined seismic and hydrophone observations show that the traditional T wave propagates as a seismoacoustic polarized interface wave (Ti) coupled to the seafloor. Seismoacoustic Ti waves propagating at the sound speed of water are routinely observed over megameter distances at the deep (4979 m) seafloor Hawaii-2 Observatory (H2O) between Hawaii and California, even though the seafloor site is within a shadow zone for acoustic wave propagation. Ti has also been observed on seismometers 225 km SSW of Oahu at the OSN1 site at the seafloor and within an ODP borehole into the basalt basement. Analyses of timing, apparent velocity, energy, and polarization of these interface waves are presented. At low frequency (< approximately 5 Hz) Ti propagates dominantly in the sediments and is consistent with higher-mode Rayleigh waves. At higher frequencies the observed Ti waves dominantly propagate acoustically with characteristics suggesting local scattering. The observation of Ti from an earthquake in Guatemala at OSN1, whose path is blocked by the Island of Hawaii, is consistent with scattering from the vicinity of the Cross Seamount.  相似文献   

10.
Green's functions are derived for elastic waves generated by a volume source in a homogeneous isotropic half-space. The context is sources at shallow burial depths, for which surface (Rayleigh) and bulk waves, both longitudinal and transverse, can be generated with comparable magnitudes. Two approaches are followed. First, the Green's function is expanded with respect to eigenmodes that correspond to Rayleigh waves. While bulk waves are thus ignored, this approximation is valid on the surface far from the source, where the Rayleigh wave modes dominate. The second approach employs an angular spectrum that accounts for the bulk waves and yields a solution that may be separated into two terms. One is associated with bulk waves, the other with Rayleigh waves. The latter is proved to be identical to the Green's function obtained following the first approach. The Green's function obtained via angular spectrum decomposition is analyzed numerically in the time domain for different burial depths and distances to the receiver, and for parameters relevant to seismo-acoustic detection of land mines and other buried objects.  相似文献   

11.
A laser technique for generating convergent acoustic waves is described. The optically probed Rayleigh wave in the centre of convergence shows an amplification factor of the order of 20 with respect to a collimated surface wave. Applications to the ultrasonic characterization of layered materials and to crack detection are described.  相似文献   

12.
The method of wave function expansion is adopted to study the scattering of a plane harmonic acoustic wave incident at an arbitrary angle upon an arbitrarily thick cylindrically orthotropic homogeneous cylindrical shell submerged in and filled with compressible ideal fluids. A laminate approximate model and the so-called state space formulation in conjunction with the classical transfer matrix (T-matrix) approach are employed to present an analytical solution based on the three-dimensional exact equations of anisotropic elasticity. The solution is used to correlate the perturbation in the material elastic constants of an air-filled and water-submerged aluminium cylindrical shell to the sensitivity of resonances associated with various modes of wave propagation appearing in the backscattered amplitude spectrum (i.e., axially guided, Lamb, Rayleigh and Whispering Gallery waves). The effects of shell wall thickness as well as inner fluid loading on the frequency response of the shell are also examined. A limiting case is considered and good agreement with the solution available in the literature is obtained.  相似文献   

13.
A theory for the linear and quadratic responses of a 2D gas of indirect dipolar excitons to an external surface acoustic wave perturbation in the presence of a static random potential is considered. The theory is constructed both for high temperatures, definitely greater than the exciton gas condensation temperature, and at zero temperature by taking into account the Bose–Einstein condensation effects. The particle Green functions, the density–density correlation function, and the quadratic response function are calculated by the “cross” diagram technique. The results obtained are used to calculate the absorption of Rayleigh surface waves and the acoustic exciton gas drag by a Rayleigh wave. The damping of Bogoliubov excitations in an exciton condensate due to theirs scattering by a random potential has also been determined.  相似文献   

14.
The problem of Rayleigh wave scattering from a set of N chains of closely spaced identical mechanical resonators is considered. The distance between the chains is identical to the half-wavelength of Rayleigh waves at the frequency ω taken to be identical or close to the natural frequency of the chain of resonators with allowance for the associated elasticity. The coefficient of reflection of Rayleigh waves from the diffraction grating specified above is calculated.  相似文献   

15.
We examine the Rayleigh hypothesis in the context of scattering of light off photonic crystal interfaces. First, the hypothesis - which was initially suggested for scattering of waves off rough surfaces between homogeneous media - is rephrased to apply to photonic crystal interfaces. Next, an exact and explicit functional form is presented that maps plane photonic crystal surfaces to periodic rough surfaces in free space, so that known criteria for the validity of the Rayleigh hypothesis for scattering at rough surfaces can be applied directly to scattering at the photonic crystal surfaces. The same map also allows the scattering problem to be solved exactly.  相似文献   

16.
Novel Monte Carlo techniques are described for the computation of reflection coefficient matrices for multiple scattering of light in plane-parallel random media of spherical scatterers. The present multiple scattering theory is composed of coherent backscattering and radiative transfer. In the radiative transfer part, the Stokes parameters of light escaping from the medium are updated at each scattering process in predefined angles of emergence. The scattering directions at each process are randomized using probability densities for the polar and azimuthal scattering angles: the former angle is generated using the single-scattering phase function, whereafter the latter follows from Kepler's equation. For spherical scatterers in the Rayleigh regime, randomization proceeds semi-analytically whereas, beyond that regime, cubic spline presentation of the scattering matrix is used for numerical computations. In the coherent backscattering part, the reciprocity of electromagnetic waves in the backscattering direction allows the renormalization of the reversely propagating waves, whereafter the scattering characteristics are computed in other directions. High orders of scattering (~10 000) can be treated because of the peculiar polarization characteristics of the reverse wave: after a number of scatterings, the polarization state of the reverse wave becomes independent of that of the incident wave, that is, it becomes fully dictated by the scatterings at the end of the reverse path. The coherent backscattering part depends on the single-scattering albedo in a non-monotonous way, the most pronounced signatures showing up for absorbing scatterers. The numerical results compare favourably to the literature results for nonabsorbing spherical scatterers both in and beyond the Rayleigh regime.  相似文献   

17.
Using the integral Fourier-transform technique, we obtain a solution in integral form to the problem of excitation of elastic waves in a homogeneous isotropic solid half-space and the bordering homogeneous gas by the time-dependent forces which are arbitrarily distributed in a solid over the plane parallel to the interface of the media. Different configurations of the force sources are analyzed from the viewpoint of excitation of different types of seismoacoustic waves. Expressions for the time-averaged radiated powers of the Stoneley wave at the gas–solid interface and the Rayleigh wave at the solid–vacuum interface as well as analytical expressions for the Rayleigh wave displacements, which are valid for large distances from the source, are obtained for the harmonic dependence of forces on time. Excitation of a Rayleigh wave by the point sources oriented vertically, i.e., along the normal to the surface of elastic half-space, and horizontally, i.e., parallel to this surface, is analyzed in detail. Analytical expressions for the Rayleigh-wave radiated power are obtained. The dependences of these powers on the source orientation and depth are derived. It is shown that the Rayleigh-wave radiated power decreases with distance between the point of the force application and the boundary and turns to zero for a source depth of about 17.5% of the wavelength of the transverse wave in the case of a horizontally oriented subsurface source and a medium with identical Lamé parameters λ and μ. This power increases and reaches a relative maximum when the source depth becomes equal to about 42.4% of the wavelength of the transverse wave and then exponentially falls off as the source depth increases. This maximum is about 5.5% of the surface-source radiated power.  相似文献   

18.
The interior radiances are calculated within an optically deep absorbing medium scattering according to the Haze L phase function. The dependence on the solar zenith angle, the single scattering albedo, and the optical depth within the medium is calculated by the matrix operator method. The development of the asymptotic angular distribution of the radiance in the diffusion region is illustrated through a number of examples; it depends only on the single scattering albedo and on the phase function for single scattering. The exact values of the radiance in the diffusion region are compared with values calculated from the approximate equations proposed by Van de Hulst. The variation of the radiance near the lower boundary of an optically thick medium is illustrated with examples. The attenuation length is calculated for various single scattering albedos and compared with the corresponding values for Rayleigh scattering. The ratio of the upward to the downward flux is found to be remarkably constant within the medium. The heating rate is calculated and found to have a maximum value at an optical depth of two within a Haze L layer when the sun is at the zenith. The location of this maximum moves toward the top of the haze layer as the solar zenith angle increases and also as the single scattering albedo decreases. When the single scattering albedo is less than 0·8, the downward flux is so small within the diffusion region that experimental measurements are probably not possible.  相似文献   

19.
Rayleigh type surface wave propagation in the irregular bottom of ocean model which is the interface of homogeneous liquid layer over laying an irregular boundary of homogeneous orthotropic half space under initial stresses has been discussed in this paper. Three different dispersion equations are obtained in the form of simple equation using and not using Perturbation technique. Some special cases have been considered. The effect of irregularity, initial stressed, point source, and depth of liquid layer on the propagation of Rayleigh waves has been analyzed and results of numerical discussion have been presented graphically for three different dispersion equations. Mainly the graphs are shown the variation of phase velocity with wave number in different cases.  相似文献   

20.
Acoustical Physics - Methodological aspects of remote sensing of layered media using Rayleigh surface waves are considered. Estimates of the error in measuring the shear wave velocities and Poisson...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号