首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high resolution Fourier transform ion cyclotron resonance (FTICR) mass spectrometer is used for characterizing the fragmentation of chlorophyll-a. Three tandem mass spectrometry (MS/MS) techniques, including electron-induced dissociation (EID), collisionally activated dissociation (CAD), and infrared mutiphoton dissociation (IRMPD) are applied to the singly protonated chlorophyll-a. Some previously unpublished fragments are identified unambiguously by utilizing high resolution and accurate mass value provided by the FTICR mass spectrometer. According to this research, the two long aliphatic side chains are shown to be the most labile parts, and favorable cleavage sites are proposed. Even though similar fragmentation patterns are generated by all three methods, there are much more abundant peaks in EID and IRMPD spectra. The similarities and differences are discussed in detail. Comparatively, cleavage leading to odd electron species and H? loss both seem more common in EID experiments. Extensive loss of small side groups (e.g., methyl and ethyl) next to the macrocyclic ring was observed. Coupling the high performance FTICR mass spectrometer with contemporary MS/MS techniques, especially IRMPD and EID, proved to be very promising for the structural characterization of chlorophyll, which is also suitable for the rapid and accurate structural investigation of other singly charged porphyrinic compounds.   相似文献   

2.
Tandem mass spectrometry (MS/MS) of intact, noncovalently-bound protein-ligand complexes can yield structural information on the site of ligand binding. Fourier transform ion cyclotron resonance (FT-ICR) top-down MS of the 29 kDa carbonic anhydrase-zinc complex and adenylate kinase bound to adenosine triphosphate (ATP) with collisionally activated dissociation (CAD) and/or electron capture dissociation (ECD) generates product ions that retain the ligand and their identities are consistent with the solution phase structure. Increasing gas phase protein charging from electrospray ionization (ESI) by the addition of supercharging reagents, such as m-nitrobenzyl alcohol and sulfolane, to the protein analyte solution improves the capability of MS/MS to generate holo-product ions. Top-down proteomics for protein sequencing can be enhanced by increasing analyte charging.  相似文献   

3.
Over the last two decades, native mass spectrometry (MS) has emerged as a valuable tool to study intact proteins and noncovalent protein complexes. Studied experimental systems range from small-molecule (drug)–protein interactions, to nanomachineries such as the proteasome and ribosome, to even virus assembly. In native MS, ions attain high m/z values, requiring special mass analyzers for their detection. Depending on the particular mass analyzer used, instrumental mass resolution does often decrease at higher m/z but can still be above a couple of thousand at m/z 5000. However, the mass resolving power obtained on charge states of protein complexes in this m/z region is experimentally found to remain well below the inherent instrument resolution of the mass analyzers employed. Here, we inquire into reasons for this discrepancy and ask how native MS would benefit from higher instrumental mass resolution. To answer this question, we discuss advantages and shortcomings of mass analyzers used to study intact biomolecules and biomolecular complexes in their native state, and we review which other factors determine mass resolving power in native MS analyses. Recent examples from the literature are given to illustrate the current status and limitations.
Figure
?  相似文献   

4.
AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that is essential in regulating energy metabolism in all eukaryotic cells. It is a heterotrimeric protein complex composed of a catalytic subunit (α) and two regulatory subunits (β and γ). C-terminal truncation of AMPKα at residue 312 yielded a protein that is active upon phosphorylation of Thr172 in the absence of β and γ subunits, which is refered to as the AMPK catalytic domain and commonly used to substitute for the AMPK heterotrimeric complex in in vitro kinase assays. However, a comprehensive characterization of the AMPK catalytic domain is lacking. Herein, we expressed a His-tagged human AMPK catalytic domin (denoted as AMPKΔ) in E. coli, comprehensively characterized AMPKΔ in its basal state and after in vitro phosphorylation using top-down mass spectrometry (MS), and assessed how phosphorylation of AMPKΔ affects its activity. Unexpectedly, we found that bacterially-expressed AMPKΔ was basally phosphorylated and localized the phosphorylation site to the His-tag. We found that AMPKΔ had noticeable basal activity and was capable of phosphorylating itself and its substrates without activating phosphorylation at Thr172. Moreover, our data suggested that Thr172 is the only site phosphorylated by its upstream kinase, liver kinase B1, and that this phosphorylation dramatically increases the kinase activity of AMPKΔ. Importantly, we demonstrated that top-down MS in conjunction with in vitro phosphorylation assay is a powerful approach for monitoring phosphorylation reaction and determining sequential order of phosphorylation events in kinase-substrate systems.
Graphical Abstract ?
  相似文献   

5.
Sphingolipids serve not only as components of cellular membranes but also as bioactive mediators of numerous cellular functions. As the biological activities of these lipids are dependent on their structures, and due to the limitations of conventional ion activation methods employed during tandem mass spectrometry (MS/MS), there is a recognized need for the development of improved structure-specific methods for their comprehensive identification and characterization. Here, positive-ionization mode 193 nm ultraviolet photodissociation (UVPD)-MS/MS has been implemented for the detailed structural characterization of lipid species from a range of sphingolipid classes introduced to the mass spectrometer via electrospray ionization as their lithiated or protonated adducts. These include sphingosine d18:1(4E), dihydrosphingosine (sphinganine) d18:0, sphingadiene d18:2(4E,11Z), the isomeric sphingolipids ceramide d18:1(4E)/18:0 and dihydroceramide d18:0/18:1(9Z), ceramide-1-phosphate d18:1(4Z)/16:0, sphingomyelin d18:1(4E)/18:1(9Z) the glycosphingolipids galactosyl ceramide d18:1(4E)/24:1(15Z) and lactosyl ceramide d18:1(4E)/24:0, and several endogenous lipids present within a porcine brain total lipid extract. In addition to the product ions formed by higher energy collision dissociation (HCD), UVPD is shown to yield a series of novel structurally diagnostic product ions resulting from cleavage of both sphingosine carbon–carbon and acyl chain carbon–carbon double bonds for direct localization of site(s) of unsaturation, as well as via diagnostic cleavages of the sphingosine backbone and N–C amide bond linkages. With activation timescales and dissociation efficiencies similar to those found in conventional MS/MS strategies, this approach is therefore a promising new tool in the arsenal of ion activation techniques toward providing complete structural elucidation in automated, high-throughput lipid analysis workflows.
Graphical Abstract ?
  相似文献   

6.
High resolution mass spectrometry (HRMS) was successfully applied to elucidate the structure of a polyfluorinated polyether (PFPE)-based formulation. The mass spectrum generated from direct injection into the MS was examined by identifying the different repeating units manually and with the aid of an instrument data processor. Highly accurate mass spectral data enabled the calculation of higher-order mass defects. The different plots of MW and the nth-order mass defects (up to n = 3) could aid in assessing the structure of the different repeating units and estimating their absolute and relative number per molecule. The three major repeating units were -C2H4O-, -C2F4O-, and -CF2O-. Tandem MS was used to identify the end groups that appeared to be phosphates, as well as the possible distribution of the repeating units. Reversed-phase HPLC separated of the polymer molecules on the basis of number of nonpolar repeating units. The elucidated structure resembles the structure in the published manufacturer technical data. This analytical approach to the characterization of a PFPE-based formulation can serve as a guide in analyzing not just other PFPE-based formulations but also other fluorinated and non-fluorinated polymers. The information from MS is essential in studying the physico-chemical properties of PFPEs and can help in assessing the risks they pose to the environment and to human health.
Graphical Abstract ?
  相似文献   

7.
样品采取索氏抽提,抽提液依次经多段混合硅胶柱、氧化铝柱和硅胶柱净化后,采用同位素稀释法和高分辨气相色谱/高分辨质谱联用仪(HRGC/HRMS)对其中的17个2,3,7,8-氯取代二噁英(PCDD/Fs)同系物进行了测定。研究结果表明,用本法4次分析二噁英标准溶液,其结果的RSD<7.1%;回收率可达62%~103%;标准参考样品的分析结果与标准值基本吻合,3次实验结果的RSD≤15%;仪器检出限为2,3,7,8-TCDF 0.1 pg,2,3,7,8-TCDD 0.2 pg,OCDD 0.8 pg;测定某降尘样品中二噁英,计算得降尘通量为14.02 pgTEQ m-2day-1。  相似文献   

8.
The study of protein kinetics requires an accurate measurement of isotopic ratios of peptides. Although Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometers yield accurate mass measurements of analytes, the isotopologue ratios are consistently lower than predicted. Recently, we demonstrated that the magnitude of the spectral error in the FT-ICR mass spectrometer is proportional to the scan duration of ions. Here, we present a novel isotopic ratio extrapolation (IRE) method for obtaining accurate isotopic ratio measurements. Accuracy is achieved by performing scans with different duration and extrapolation of the data to the initial moment of the ion rotation; IRE minimizes the absolute isotopic ratio error to ≤1 %. We demonstrate the application of IRE in protein turnover studies using 2H2O-metabolic labeling. Overall, this technique allows accurate measurements of the isotopic ratios of proteolytic peptides, a critical step for enabling routine studies of proteome dynamics.   相似文献   

9.
10.
采用具有超高分辨率的负离子电喷雾-傅立叶变换离子回旋共振质谱(ESI FT-ICR MS)分析了储层岩石抽提物中的石油酸及中性氮化物的分子组成,得到了抽提物中杂原子化合物类型分布、等效双键数(Double bonds equivalent,DBE)及碳数分布特征。研究结果表明,储层抽提物中含有多达16种不同杂原子类型的化合物,包括N1、N1O1、N1O2、N1O3、N1S1、N1S2、N2、N2S1、O1、O1S1、O2、O2S1、O1S2、O2S2、O3和O4,其中N1、N1S1、O2及O2S1类具有较高的相对丰度。抽提物中的N1类化合物以咔唑和苯并咔唑类化合物为主;N1S1类化合物以C2~C8烷基取代的咔唑并苯并噻吩类化合物为主;O2类化合物主要为1~2环环烷酸,其次还在抽提物中鉴别出具有较高相对丰度的DBE为5和6的O2类化合物;而O2S1类化合物中以DBE为7和8的O2S1具有最高的相对丰度。  相似文献   

11.
We report identification of the binding sites for an organometallic ruthenium anticancer complex [(η 6-biphenyl)Ru(en)Cl][PF6] (1; en = ethylenediamine) on the 15-mer single-stranded oligodeoxynucleotides (ODNs), 5′-CTCTCTX7G8Y9CTTCTC-3′ [X = Y = T (I); X = C and Y = A (II); X = A and Y = T (III); X = T and Y = A (IV)] by electrospray ionization mass spectrometry (ESI-MS) in conjunction with enzymatic digestion or tandem mass spectrometry (top-down MS). ESI-MS combined with enzymatic digestion (termed MS-based ladder-sequencing), is effective for identification of the thermodynamically-favored G-binding sites, but not applicable to determine the thermodynamically unstable T-binding sites because the T-bound adducts dissociate during enzymatic digestion. In contrast, top-down MS is efficient for localization of the T binding sites, but not suitable for mapping ruthenated G bases, due to the facile fragmentation of G bases from ODN backbones prior to the dissociation of the phosphodiester bonds. The combination of the two MS approaches reveals that G8 in each ODN is the preferred binding site for 1, and that the T binding sites of 1 are either T7 or T11 on I and IV, and either T6 or T11 on II and III, respectively. These findings not only demonstrate for the first time that T-bases in single-stranded oligonucleotides are kinetically competitive with guanine for such organoruthenium complexes, but also illustrate the relative merits of the combination of ladder-sequencing and top-down MS approaches to elucidate the interactions of metal anticancer complexes with DNA.   相似文献   

12.
13.
Matrix assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) has the ability to provide an enormous amount of information on the abundances and spatial distributions of molecules within biological tissues. The rapid progress in the development of this technology significantly improves our ability to analyze smaller and smaller areas and features within tissues. The mammalian eye has evolved over millions of years to become an essential asset for survival, providing important sensory input of an organism’s surroundings. The highly complex sensory retina of the eye is comprised of numerous cell types organized into specific layers with varying dimensions, the thinnest of which is the 10 μm retinal pigment epithelium (RPE). This single cell layer and the photoreceptor layer contain the complex biochemical machinery required to convert photons of light into electrical signals that are transported to the brain by axons of retinal ganglion cells. Diseases of the retina, including age-related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy, occur when the functions of these cells are interrupted by molecular processes that are not fully understood. In this report, we demonstrate the use of high spatial resolution MALDI IMS and FT-ICR tandem mass spectrometry in the Abca4 –/– knockout mouse model of Stargardt disease, a juvenile onset form of macular degeneration. The spatial distributions and identity of lipid and retinoid metabolites are shown to be unique to specific retinal cell layers.
Figure
?  相似文献   

14.
Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) was used to determine the structures of anhydroicaritin glycosides by the MS/MS experiments of anhydroicaritin glycosides and their methylated derivatives,With high accuracy FT-ICR-MS provides much information about the structures of compounds ,FT-ICR-MS shows the great potential application in the structural characterization of unknown compounds.  相似文献   

15.
Steroid conjugates, which often occur as metabolites, are challenging to characterize. One application is female-mouse urine, where steroid conjugates serve as important ligands for the pheromone-sensing neurons. Although the two with the highest abundance in mouse urine were previously characterized with mass spectrometry (MS) and NMR to be sulfated steroids, many more exist but remain structurally unresolved. Given that their physical and chemical properties are similar, they are likely to have a sulfated steroid ring structure. Because these compounds occur in trace amounts in mouse urine and elsewhere, their characterization by NMR will be difficult. Thus, MS methods become the primary approach for determining structure. Here, we show that a combination of MS tools is effective for determining the structures of sulfated steroids. Using 4-pregnene analogs, we explored high-resolving power MS (HR-MS) to determine chemical formulae; HD exchange MS (HDX-MS) to determine number of active, exchangeable hydrogens (e.g., OH groups); methoxyamine hydrochloride (MOX) derivatization MS, or reactive desorption electrospray ionization with hydroxylamine to determine the number of carbonyl groups; and tandem MS (MSn), high-resolution tandem MS (HRMS/MS), and GC-MS to obtain structural details of the steroid ring. From the fragmentation studies, we deduced three major fragmentation rules for this class of sulfated steroids. We also show that a combined MS approach is effective for determining structure of steroid metabolites, with important implications for targeted metabolomics in general and for the study of mouse social communication in particular.
Figure
?  相似文献   

16.
高分辨气相色谱-高分辨质谱测定活性污泥中的多溴联苯醚   总被引:16,自引:3,他引:16  
王亚伟  张庆华  刘汉霞  江桂斌 《色谱》2005,23(5):492-495
建立了利用高分辨气相色谱-高分辨质谱定量测定多溴联苯醚(PBDEs)的方法,参与了测定PBDEs的国际比对实验,实验结果表明该法是可行的。对不同地区(北京、山东临沂、上海)的3个污水处理厂的活性污泥进行了索氏提取、多层复合硅胶柱分离,然后用所建立的方法测定了19种多溴联苯醚单体的含量。结果表明,北京某污水处理厂的活性污泥中PBDEs的总量高于其他两者。  相似文献   

17.
采用直接提取稀释的快速前处理方法,结合稳定同位素稀释技术,利用超高效液相色谱-四极杆/静电场轨道阱高分辨质谱,建立了粮食中16种真菌毒素的快速精准分析方法。样品采用乙腈-水-乙酸溶液(70∶29∶1,体积比)提取,以C18色谱柱进行色谱分离,通过全扫描模式进行定量检测,并采用稳定同位素稀释以减少基质效应对定量分析的影响。结果表明,16种真菌毒素在一定浓度范围内均具有良好的线性关系,相关系数(r2)均大于0.999,4种常见粮食基质(小麦、玉米、大米、大麦)的限量浓度水平的加标回收率(n=6)为75.3%~123.5%,相对标准偏差为0.41%~14.7%。该方法简单、准确,适用于粮食中真菌毒素的检测,可满足日常监测工作的需要。  相似文献   

18.
Correct and rapid identification of microorganisms is the key to the success of many important applications in health and safety, including, but not limited to, infection treatment, food safety, and biodefense. With the advance of mass spectrometry (MS) technology, the speed of identification can be greatly improved. However, the increasing number of microbes sequenced is challenging correct microbial identification because of the large number of choices present. To properly disentangle candidate microbes, one needs to go beyond apparent morphology or simple ‘fingerprinting’; to correctly prioritize the candidate microbes, one needs to have accurate statistical significance in microbial identification. We meet these challenges by using peptidome profiles of microbes to better separate them and by designing an analysis method that yields accurate statistical significance. Here, we present an analysis pipeline that uses tandem MS (MS/MS) spectra for microbial identification or classification. We have demonstrated, using MS/MS data of 81 samples, each composed of a single known microorganism, that the proposed pipeline can correctly identify microorganisms at least at the genus and species levels. We have also shown that the proposed pipeline computes accurate statistical significances, i.e., E-values for identified peptides and unified E-values for identified microorganisms. The proposed analysis pipeline has been implemented in MiCId, a freely available software for Microorganism Classification and Identification. MiCId is available for download at http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html.
Graphical Abstract ?
  相似文献   

19.
人乳寡糖(Human milk oligosaccharides,HMOs)与婴幼儿生命初期的生长发育密切相关,揭示其组成及结构有助于阐明HMOs功能.本研究通过超高效液相色谱-高分辨质谱联用技术,对19个HMOs(16个中性HMOs、3个酸性HMOs)进行了结构解析,在寡糖异构体裂解规律的基础上详细探讨了4组异构体的...  相似文献   

20.
High-resolution mass spectrometry (HRMS) continues to play an important role in the compositional characterization of larger organic molecules. In the field of polymer characterization, however, the application of HRMS has made only slow progress because of lower compatibility between matrix-assisted laser desorption/ionization (MALDI) and ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICRMS). In this study, a newly developed type of MALDI high-resolution time-of-flight mass spectrometry (TOFMS) with a spiral ion trajectory (MALDI spiral-TOFMS) was applied to the structural and compositional characterization of polymers. To create a graphical distribution of polymer components on a two-dimensional plot converted from complex mass spectra, we adopted a slightly modified Kendrick mass defect (KMD) analysis based on accurate masses determined using spiral-TOFMS. By setting the Kendrick mass scale based on the mass of the repeating units of a given polymer, components with common repeat units lined up in the horizontal direction on the KMD plot, whereas those components with different structures were shifted vertically. This combination of MALDI spiral-TOFMS measurement and KMD analysis enabled the successful discrimination of the polymer components in a blend of poly(alkylene oxide)s, the compositional analysis of poly(ethylene oxide)/poly(propylene oxide) block copolymers, and profiling of the end-group distribution of poly(ε-caprolactone)s synthesized under different conditions.
?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号