首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While erythemal irradiance as a potentially damaging effect to the skin has been extensively studied and short-term forecasts have been issued to the public to reduce detrimental immediate and long-term effects such as sunburn and skin cancer by overexposure, beneficial effects to human health such as vitamin D(3) production by UV radiation and melatonin suppression by blue visible light have attained more and more attention, though both of them have not become part of forecasting yet. Using 4years of solar radiation data measured at the mid-latitude site Lindenberg (52°N), and forecast daily maximum UV index values, an overall good correspondence has been found. The data base of solar UV radiation and illuminance has also been used to analyze effects of clouds and aerosols on the effective irradiance. Optically thick clouds can strongly modify the ratios between erythemal and vitamin D(3) effective irradiance such that direct radiative transfer modeling of the latter in future UV forecasts should be preferably used. If parameterizations of vitamin D(3) effective irradiance from erythemal irradiance are used instead, the optical cloud depth would have to be taken into account to avoid an overestimation of vitamin D(3) with parameterizations neglecting cloud optical depth. Particular emphasis for the beneficial effects has been laid in our study on low exposure. Daily doses of solar irradiation for both vitamin D(3) and melatonin suppression do not reach minimum threshold doses even with clear sky and unobstructed horizon during the winter months.  相似文献   

2.
The effect of cloud cover on the amount of solar UV radiation that reaches pedestrians under tree cover was evaluated with a three-dimensional canopy radiation transport model. The spatial distribution of UVB irradiance at the base of a regular array of spherical tree crowns was modeled under the full range of sky conditions. The spatial mean relative irradiance (I), and erythemal irradiance of the entire below-canopy domain and the spatial mean relative irradiance and erythemal irradiance in the shaded regions of the domain were determined for solar zenith angles from 15° to 60°. The erythemal UV irradiance under skies with 50% or less cloud cover was not remarkably different from that under clear skies. In the shade, the actual irradiance was greater under partly cloudy than under clear skies. The mean ultraviolet protection factor for tree canopies under skies with 50% or less cloud cover was nearly equivalent to that for clear sky days. Regression equations of spatially averaged Ir . as a function of cloud cover fraction, solar zenith angle and canopy cover were used to predict the variation in erythemal irradiance in different land uses across Baltimore, MD.  相似文献   

3.
Differences between global radiation UVER (erythemal ultraviolet solar radiation) received under full sun and diffuse radiation received under the shadow of two types of tree are analyzed to check the importance of these components on human exposure to UV radiation. Blue Line spores dosimeters of VioSpor were used for measurement of erythemal dose of UV radiation (able to produce erythema in human skin.) The response profile of these devices is extremely similar to human skin, thus they are suitable to determine and predict the interactions between UV erythema and human skin. Measurements were obtained in relatively clear days from February to December 2009 between 9:30 and 15:30 h. Three dosimeters were placed on a horizontal surface: one in full sun and the other two under the shadow of each tree. Values of UVER in both cases, in full sun and under the shadow of pine and Sauce, were obtained. In addition, the comparison was made between values of dose received in each case and the exposure limits recommended by the International Commission on Non‐Ionizing Radiation Protection (ICNIRP). Finally, average daily irradiance received under the shadow of each tree in comparison with those received in full sun, was also analyzed using two PMA2100 radiometers situated on a horizontal surface.  相似文献   

4.
Several broadband ultraviolet (UV) radiation angular distribution investigations have been previously presented. As the biologically damaging effectiveness of UV radiation is known to be wavelength dependent, it is necessary to expand this research into the distribution of the spectral UV. UV radiation is also susceptible to Rayleigh and Mie scattering processes, both of which are completely wavelength dependent. Additionally, the majority of previous measurements detailing the biologically damaging effect of spectral UV radiation have been oriented with respect to the horizontal plane or in a plane directed towards the sun (sun-normal), with the irradiance weighted against action spectra formulated specifically for human skin and tissue. However, the human body consists of very few horizontal or sun-normal surfaces. Extending the previous research by measuring the distribution of the spectral irradiance across the sky for the complete terrestrial solar UV waveband and weighting it against erythemal, photoconjunctivital and photokeratital action spectra allowed for the analysis of the differences between the biologically effective irradiance (UV(BE)) values intercepted at different orientations and the effect of scattering processes upon the homogeneity of these UV(BE) distributions. It was established that under the local atmospheric environment, the distribution profile of the UV(BE) for each biological response was anisotropic, with the highest intensities generally intercepted at inclination angles situated between the horizontal and vertical planes along orientations closely coinciding with the sun-normal. A finding from this was that the angular distributions of the erythemal UV(BE) and the photoconjunctivital UV(BE) were different, due to the differential scattering between the shorter and longer UV wavelengths within the atmosphere.  相似文献   

5.
Estimation of pedestrian level UV exposure under trees   总被引:1,自引:0,他引:1  
Trees influence the amount of solar UV radiation that reaches pedestrians. A three-dimensional model was developed to predict the ultraviolet-B (UV-B) irradiance fields in open-tree canopies where the spacing between trees is equal to or greater than the width of individual tree crowns. The model predicted the relative irradiance (fraction of above-canopy irradiance) under both sunlit and shaded conditions under clear skies with a mean bias error of less than 0.01 and a root mean square error of 0.07. Both model and measurements showed that the locations people typically perceive as shady, low-irradiance locations in the environment can actually have significant UV-B exposure (40-60% of that under direct sunlight). The relationship of tree cover in residential neighborhoods to erythemal UV-B exposure for children and adults was modeled for the 4 h around noon in June and July. Results showed that human exposures (on the horizontal) in cities located at 15 and 30 degrees latitudes are nearly identical. For latitudes between 15 and 60 degrees, ultraviolet protection factors (UPF) were less than 2 for less than 50% tree cover. A UPF of 10 was possible at all latitudes for tree cover of 90%.  相似文献   

6.
7.
The body surface area of man is the relevant receiving surface for solar UV radiation. To consider this body surface geometry, the biologically-effective UV radiation of the solar global radiation was measured. This was done at 26 differently aligned measuring points whose orientation was determined by the angle of inclination (vertical) and the azimuth (horizontal). Approximately eight hundred sets of measurement series were carried out at 33 different sites. A simple model, developed from the data obtained, made it possible to calculate relative irradiance as a function of the angle of inclination and the ground reflection (UV albedo). Thus relative risk of solar UV exposure to different regions of the body can be assessed. In addition to this, if the irradiance on a horizontal plane (measured or calculated by a corresponding model) is taken into consideration, the absolute values for UV irradiance on tilted planes can be determined.  相似文献   

8.
UV radiation measured on normal-to-the-sun-oriented surfaces can show significantly higher global UV irradiance values compared to measurements on horizontal receivers. The direct component is amplified by the inverse cosine of the zenith angle, but over surfaces with high local albedo this accounts for only about half of the signal rise of global irradiance. The signal rise of the diffuse component, however, is strongly related to local albedo and solar elevation, which is demonstrated by 2 years of measurements of direct, diffuse, global, reflected and global normal-to-the-sun erythemal effective UV irradiance (UVery). Global UVery signal rises, on normal-to-the-sun-oriented versus horizontal receivers, of up to 65% were measured on fresh snow and solar elevation angles below 30 degrees. An empirical expression has been deduced from the measurements relating the ratio of normal-to-the-sun versus horizontal measurements of global UVery to surface albedo and solar elevation. This allows one to calculate the maximum global UVery irradiance levels which are to be expected on normal-to-the-sun-oriented surfaces with respect to horizontal measurements or model calculations.  相似文献   

9.
An analysis is made of experimental ultraviolet erythemal solar radiation data measured during the years 2000 and 2001 by the Spanish UV-B radiation evaluation and prediction network. This network consists of 16 Robertson-Berger type pyranometers for evaluating solar erythemal radiation and five Brewer spectroradiometers for evaluating the stratospheric ozone. On the basis of these data the Ultraviolet Index (UVI) was evaluated for the measuring stations that are located either in coastal regions or in the more densely populated regions inland on the Iberian Peninsula. It has been checked that in most cases the maximum irradiance values corresponded to solar noon, although there were exceptions that could be explained by cloudiness. The maximum experimental values of the UVI were around 9 during the summer, though frequently passing this value at the inland measurement stations. The annual accumulated dose of irradiation on a horizontal plane has also been studied, as well as the evolution through the year in units of energy, standard erythemal doses and minimum erythemal doses, according to different phototypes.  相似文献   

10.
A spectrum evaluator based on four different dosimeter materials has been employed to estimate the spectral irradiances of solar radiation for exposed humans. The result is used to calculate the biologically effective irradiance using the erythemal action spectrum and a fish melanoma action spectrum. Measurements are made in winter at a sub-tropical site on the chest and shoulder of subjects during normal daily activities. Up to 95% of the total UV exposure received is in the UV-A waveband (320-400 nm). The UV-A waveband is found to contribute approximately 14% of the erythemal UV and 93% of the biologically effective UV for fish melanoma. Extrapolation to humans suggests that exposure to the UV-A band will contribute to photodamage in human skin during exposure to solar radiation.  相似文献   

11.
During July 2000 we used an electronic personal dosimeter (X-2000) and a biological dosimeter (Deutsches Zentrum für Luft- und Raumfahrt: Biofilm) to characterize the UV radiation exposure of arctic field scientists involved in biological and geological fieldwork. These personnel were working at the Haughton impact structure on Devon Island (75 degrees N) in the Canadian High Arctic under a 24 h photoperiod. During a typical day of field activities under a clear sky, the total daily erythemally weighted exposure, as measured by electronic dosimetry, was up to 5.8 standard erythemal dose (SED). Overcast skies (typically 7-8 okta of stratus) reduced exposures by a mean of 54%. We estimate that during a month of field activity in July a typical field scientist at this latitude could potentially receive approximately 80 SED to the face. Because of body movements the upper body was exposed to a UV regimen that often changed on second-to-second time-scales as assessed by electronic dosimetry. Over a typical 10 min period on vehicle traverse, we found that erythemal exposure could vary to up to 87% of the mean exposure. Time-integrated exposures showed that the type of outdoor field activities in the treeless expanse of the polar desert had little effect on the exposure received. Although absolute exposure changed in accordance with the time of day, the exposure ratio (dose received over horizontal dose) did not vary much over the day. Under clear skies the mean exposure ratio was 0.35 +/- 0.12 for individual activities at different times of the day assessed using electronic dosimetry. Biological dosimetry showed that the occupation was important in determining daily exposures. In our study, scientists in the field received an approximately two-fold higher dose than individuals, such as medics and computer scientists, who spent the majority of their time in tents.  相似文献   

12.
The protective nature of specific shade environments was investigated by measuring the spectral UV in the shade for the three planes (horizontal, 45 degrees and vertical) and comparing this to that on a horizontal plane in full sun. Spectral UV irradiance measurements were made under clear sky conditions at a sub-tropical southern hemisphere site. The solar UV in the shade of a shade umbrella, covered verandah, covered sand pit and covered walkway were measured for an increasing solar zenith angle, between March and August, for the times of 11:30 a.m.-12:30 p.m. and 2:30-3:30 p.m. The ultraviolet protection factors provided ranged from 1.4 to 10. This research shows that there is sufficient UV in the shade to cause erythema on the human body in a short period of time. For the shade umbrella placed on dry grass the time able to be spent in the shade in the middle of the day before experiencing mild erythema increased from 35 to 60 min as the solar zenith angle increased from 33 to 52 degrees. Erythemal UV levels in the shade of a northern facing covered verandah, with trees in close proximity, were approximately up to five times less than the erythemal UV beneath the shade umbrella that had no surrounding trees. Shade structures must be given careful consideration when construction occurs. Even though the UV transmission through the materials may be very low, it is the construction of the entire shade setting that determines the exposure beneath the shade structure.  相似文献   

13.
Abstract The total ozone column (TOC) is the most significant quantity for estimating the erythemally effective UV radiation under clear sky conditions. Uncertainties in TOC measurements and a limited spatial and temporal resolution therefore influence the quality of calculated erythemally effective radiation. The UV Index, the internationally accepted measure of the erythemally effective radiation, is used in public and the media to inform about current levels of UV radiation and builds the base for sun protection. Thus, the accuracy of the promoted values is essential. While in a preceding study we estimated the influence of measurement uncertainties, in this study we analyze the influence of spatial gaps and variability of TOC to the erythemally effective irradiance at noon and to the daily dose. The results allow defining the necessary spatial resolution of TOC values when a certain accuracy for the UV Index or for the purpose of sun protection is required. In case of the erythemally effective irradiance this study reveals that spatial gaps in TOC or the assumption of spatial invariability causes similar uncertainties independent of the geographic location. At higher latitudes the higher spatial variability of TOC counteracts the lower level of irradiance. For the daily dose gaps in TOC have an even higher impact at higher latitudes.  相似文献   

14.
Abstract— Measurements from sensors designed to measure erythemal UV irradiance were used to relate the UV incident on a horizontal surface to that incident on a surface maintained normal to the sun throughout the day at Lauder, New Zealand. These UV measurements were also related to variations in global radiation, total column ozone and atmospheric pressure at the surface. Strong correlations were found between these variables over the 37 day observation period in the summer of 1995/1996. Results from these cross-calibrated UV sensors show that the irradiance incident on a surface normal to the sun can be significantly different from that on a horizontal surface. On clear days, the normal-incidence signal can be 30-40% greater for solar zenith angles in the range 60-70Ao. Consequently, the risk of UV damage can be greater than reported by measurements or models that assume horizontal incidence (e.g. UV index). On cloudy days the normal-incidence UV can be less than 50% of the horizontal-incidence UV. Averaged over a day, any enhancements in normal-incidence UV over horizontal-incidence UV are smaller. The effects were strongly dependent on cloud conditions. Under clear skies the enhancements are generally less than 10%, and the integrated excess over horizontal-incidence UV is usually less than 5%. However, under cloudy skies the reductions can still be large.  相似文献   

15.
Abstract— The amount of solar radiation intercepted by an object depends on the orientation of the object with respect to the sun and the angular distribution of the diffuse component of solar radiation, which is commonly considered to be approximately isotropic. The angular distribution of the diffuse UV, visible and near-infrared insolation was measured at several solar zenith angles between 32° and 68° under cloudless skies at Lauder, New Zealand (45S), and shown to be anisotropic. The diffuse solar UV radiation increases markedly with solar elevation and is a large proportion of the total UV irradiance. The diffuse visible light and infrared radiation are small components of the total irradiance and almost independent of solar elevation. The angular distribution of erythemal UV radiation was tabulated and is available on request.  相似文献   

16.
Exposure to solar UVA (320–400 nm) radiation can damage DNA and lead to skin disorders. Conventional dosim-etry using a single piece of polysulfone or diglycol carbonate (CR-39) cannot provide accurate measurement of the biologically effective irradiance for erythema for the UVA waveband. A package employing four dosimeters (polysulfone, nalidixic acid, 8-methoxypsoralen and phe-nothiazine) has been shown to be effective for use as a spectrum evaluator for evaluating the UVA source spectrum. In Brisbane, on a horizontal position, the spectrum evaluator requires about 5 min exposure in summer and about 20 min in winter. This amounts to about 10 mJ cm-2 of erythemal UV radiation.  相似文献   

17.
Ultraviolet (UV) radiation affects human life and UV exposure is a significant everyday factor that individuals must be aware of to ensure minimal damaging biological effects to themselves. UV exposure is affected by many complex factors. Albedo is one factor, involving reflection from flat surfaces. Albedo is defined as the ratio of reflected (upwelling) irradiance to incident (downwelling) irradiance and is generally accepted only for horizontal surfaces. Incident irradiance on a non horizontal surface from a variety of incident angles may cause the reflectivity to change. Assumptions about the reflectivity of a vertical surface are frequently made for a variety of purposes but are rarely quantified. As urban structures are dominated by vertical surfaces, using albedo to estimate influence on UV exposure is limiting when incident (downwelling) irradiance is not normal to the surface. Changes to the incident angle are affected by the solar zenith angle, surface position and orientation and surface type. A new characteristic describing reflection from a surface has been used in this research. The ratio of reflected irradiance (from any surface position of vertical, horizontal or inclined) to global (or downwelling) irradiance (RRG) has been calculated for a variety of metal building surfaces in winter time in the southern hemisphere for both the UV and visible radiation spectrum, with special attention to RRG in the UV spectrum. The results show that the RRG due to a vertical surface can exceed the RRG due to a horizontal surface, at smaller solar zenith angles as well as large solar zenith angles. The RRG shows variability in reflective capacities of surface according to the above mentioned factors and present a more realistic influence on UV exposure than albedo for future investigations. Errors in measuring the RRG at large solar zenith angles are explored, which equally highlights the errors in albedo measurement at large solar zenith angles.  相似文献   

18.
According to the World Health Organization and partner organizations, no protection against ultraviolet (UV) radiation is required on days with “low” values (i.e., values <3) of the Global Solar Ultraviolet Index (UVI). Erythemal irradiance (Eer) data of such days were analyzed to evaluate this claim. Measurements from 9 stations of the German solar UV monitoring network from 2007 to 2016 yielded 14,431 daily Eer time series of low UVI days. Erythemal doses for certain fixed time intervals—acquired from measurements on horizontal planes—were compared with the average minimal erythemal dose (MED) of skin phototype II. Doses from days with rounded UVI values of 0 were insufficient to induce erythema and even on days with rounded UVI values of 1 doses exceeding 1 MED of skin type II could only be acquired under very specific circumstances of prolonged exposure. Conversely, sun exposure on days with rounded UVI values of 2 can indeed provide doses sufficient to induce erythema in skin type II after two hours around noon. In conclusion, our analyses do not support the claim of harmlessness currently associated with the entire low UVI exposure category in public guidance on interpretation of the UVI.  相似文献   

19.
Ultraviolet (UV) reflection in the urban constructed environment is not well understood for topical issues such as measuring and modeling the received UV exposure due to that UV reflection for outdoor workers. Both predominantly specular and diffuse reflecting surface types have been identified and investigated for the erythemal UV reflection ratio variation due to solar zenith angle and orientation. This paper presents relationships between erythemal UV reflection ratios measured for non‐horizontal and horizontal surfaces, with predominantly specular surface types indicating stronger relationships with solar zenith angles than diffuse reflecting surfaces types. Erythemal UV exposures caused by the same reflecting surface types at three inclinations are also investigated. Non‐horizontal surfaces can increase erythemal UV exposures compared to erythemal UV exposures received from the same horizontal surface by factors of 1.07–1.46 for specific body sites and by 1.01–1.70 for averages of group body sites for zinc aluminium coated steel sheeting.  相似文献   

20.
Excessive exposure to ultraviolet radiation (UVR) is considered the most important environmental risk factor in the development of melanoma and skin cancer. Outdoor workers are among those with the highest risk from exposure to solar UVR, as their daily activities constantly expose them to this radiation source. A study was carried out in Valencia, Spain, in summer 2012 and involved a group of 11 workers for a period of six 2‐day recordings. Sensitive spore‐film filter‐type personal dosimeters (VioSpor) were used to measure erythemal UVR received by environmental agents in the course of their daily work. Median 2‐day UV exposure was 6.2 standard erythema dose (SED), with 1 SED defined as effective 100 J m?2 when weighted with the Commission Internationale de L′Eclairage's (CIE) erythemal response function. These workers were found to receive a median of 8.3% total daily ambient ultraviolet erythemal radiation. Comparison with the occupational UV exposure limit showed that the subjects had received an erythemal UV dose in excess of occupational guidelines, indicating that protective measures against this risk are highly advisable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号