首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe work on the relationship between the independently-studied polygon-circle graphs and word-representable graphs.A graph G = (V, E) is word-representable if there exists a word w over the alpha-bet V such that letters x and y form a subword of the form xyxy ⋯ or yxyx ⋯ iff xy is an edge in E. Word-representable graphs generalise several well-known and well-studied classes of graphs [S. Kitaev, A Comprehensive Introduction to the Theory of Word-Representable Graphs, Lecture Notes in Computer Science 10396 (2017) 36–67; S. Kitaev, V. Lozin, “Words and Graphs”, Springer, 2015]. It is known that any word-representable graph is k-word-representable, that is, can be represented by a word having exactly k copies of each letter for some k dependent on the graph. Recognising whether a graph is word-representable is NP-complete ([S. Kitaev, V. Lozin, “Words and Graphs”, Springer, 2015, Theorem 4.2.15]). A polygon-circle graph (also known as a spider graph) is the intersection graph of a set of polygons inscribed in a circle [M. Koebe, On a new class of intersection graphs, Ann. Discrete Math. (1992) 141–143]. That is, two vertices of a graph are adjacent if their respective polygons have a non-empty intersection, and the set of polygons that correspond to vertices in this way are said to represent the graph. Recognising whether an input graph is a polygon-circle graph is NP-complete [M. Pergel, Recognition of polygon-circle graphs and graphs of interval filaments is NP-complete, Graph-Theoretic Concepts in Computer Science: 33rd Int. Workshop, Lecture Notes in Computer Science, 4769 (2007) 238–247]. We show that neither of these two classes is included in the other one by showing that the word-representable Petersen graph and crown graphs are not polygon-circle, while the non-word-representable wheel graph W5 is polygon-circle. We also provide a more refined result showing that for any k ≥ 3, there are k-word-representable graphs which are neither (k −1)-word-representable nor polygon-circle.  相似文献   

2.
A graph G=(V,E) is called a unit-distance graph in the plane if there is an embedding of V into the plane such that every pair of adjacent vertices are at unit distance apart. If an embedding of V satisfies the condition that two vertices are adjacent if and only if they are at unit distance apart, then G is called a strict unit-distance graph in the plane. A graph G is a (strict) co-unit-distance graph, if both G and its complement are (strict) unit-distance graphs in the plane. We show by an exhaustive enumeration that there are exactly 69 co-unit-distance graphs (65 are strict co-unit-distance graphs), 55 of which are connected (51 are connected strict co-unit-distance graphs), and seven are self-complementary.  相似文献   

3.
In this paper, we study different classes of intersection graphs of maximal hypercubes of median graphs. For a median graph G and k≥0, the intersection graph Qk(G) is defined as the graph whose vertices are maximal hypercubes (by inclusion) in G, and two vertices Hx and Hy in Qk(G) are adjacent whenever the intersection HxHy contains a subgraph isomorphic to Qk. Characterizations of clique-graphs in terms of these intersection concepts when k>0, are presented. Furthermore, we introduce the so-called maximal 2-intersection graph of maximal hypercubes of a median graph G, denoted , whose vertices are maximal hypercubes of G, and two vertices are adjacent if the intersection of the corresponding hypercubes is not a proper subcube of some intersection of two maximal hypercubes. We show that a graph H is diamond-free if and only if there exists a median graph G such that H is isomorphic to . We also study convergence of median graphs to the one-vertex graph with respect to all these operations.  相似文献   

4.
The clique graph of a graph G is the graph obtained by taking the cliques of G as vertices, and two vertices are adjacent if and only if the corresponding cliques have a non-empty intersection. A graph is self-clique if it is isomorphic to its clique graph. We give a new characterization of the set of all connected self-clique graphs having all cliques but two of size 2.  相似文献   

5.
If one can associate with each vertex of a graph an interval of a line, so that two intervals intersect just when the corresponding vertices are joined by an edge, then one speaks of an interval graph.It is shown that any graph on v vertices is the intersection (“product”) of at most [12v] interval graphs on the same vertex set.For v=2k, k factors are necessary for, and only for, the complete k-partite graph K2,2,…,2.Some results for the hypergraph generalization of this question are also obtained.  相似文献   

6.
A graph F is called middle if there exists a graph G such that there is a one-to-one correspondence between the vertices of F and the vertices and edges of G such that two vertices of F are adjacent if and only if the corresponding elements (considered as subsets of the set of vertices) have a non-empty intersection.In this paper we present a linear time algorithm for the recognition of the middle graphs. The algorithm is based on a computer-oriented characterization of middle graphs. We show also how the algorithm can be generalized to recognize the middle graphs of hypergraphs.  相似文献   

7.
Both the line graph and the clique graph are defined as intersection graphs of certain families of complete subgraphs of a graph. We generalize this concept. By a k-edge of a graph we mean a complete subgraph with k vertices or a clique with fewer than k vertices. The k-edge graph Δk(G) of a graph G is defined as the intersection graph of the set of all k-edges of G. The following three problems are investigated for k-edge graphs. The first is the characterization problem. Second, sets of graphs closed under the k-edge graph operator are found. The third problem is the question of convergence: What happens to a graph if we take iterated k-edge graphs?  相似文献   

8.
A graph G is said to be k-γ-critical if the size of any minimum dominating set of vertices is k, but if any edge is added to G the resulting graph can be dominated with k-1 vertices. The structure of k-γ-critical graphs remains far from completely understood when k?3.A graph G is factor-critical if G-v has a perfect matching for every vertex vV(G) and is bicritical if G-u-v has a perfect matching for every pair of distinct vertices u,vV(G). More generally, a graph is said to be k-factor-critical if G-S has a perfect matching for every set S of k vertices in G. In three previous papers [N. Ananchuen, M.D. Plummer, Some results related to the toughness of 3-domination-critical graphs, Discrete Math. 272 (2003) 5-15; N. Ananchuen, M.D. Plummer, Matching properties in domination critical graphs, Discrete Math. 277 (2004) 1-13; N. Ananchuen, M.D. Plummer, Some results related to the toughness of 3-domination-critical graphs. II. Utilitas Math. 70 (2006) 11-32], we explored the toughness of 3-γ-critical graphs and some of their matching properties. In particular, we obtained some properties which are sufficient for a 3-γ-critical graph to be factor-critical and, respectively, bicritical. In the present work, we obtain similar results for k-factor-critical graphs when k=3.  相似文献   

9.
The Harary index is defined as the sum of reciprocals of distances between all pairs of vertices of a connected graph. The quasi-tree graph is a graph G in which there exists a vertex vV(G) such that G?v is a tree. In this paper, we presented the upper and lower bounds on the Harary index of all quasi-tree graphs of order n and characterized the corresponding extremal graphs. Moreover we defined the k-generalized quasi-tree graph to be a connected graph G with a subset V k ?V(G) where |V k |=k such that G?V k is a tree. And we also determined the k-generalized quasi-tree graph of order n with maximal Harary index for all values of k and the extremal one with minimal Harary index for k=2.  相似文献   

10.
An intersection graph of rectangles in the (x, y)-plane with sides parallel to the axes is obtained by representing each rectangle by a vertex and connecting two vertices by an edge if and only if the corresponding rectangles intersect. This paper describes algorithms for two problems on intersection graphs of rectangles in the plane. One is an O(n log n) algorithm for finding the connected components of an intersection graph of n rectangles. This algorithm is optimal to within a constant factor. The other is an O(n log n) algorithm for finding a maximum clique of such a graph. It seems interesting that the maximum clique problem is polynomially solvable, because other related problems, such as the maximum stable set problem and the minimum clique cover problem, are known to be NP-complete for intersection graphs of rectangles. Furthermore, we briefly show that the k-colorability problem on intersection graphs of rectangles is NP-complete.  相似文献   

11.
Let G be a graph with vertex set V(G). A set C of vertices of G is g-convex if for every pair \({u, v \in C}\) the vertices on every uv geodesic (i.e. shortest uv path) belong to C. If the only g-convex sets of G are the empty set, V(G), all singletons and all edges, then G is called a g-minimal graph. It is shown that a graph is g-minimal if and only if it is triangle-free and if it has the property that the convex hull of every pair of non-adjacent vertices is V(G). Several properties of g-minimal graphs are established and it is shown that every triangle-free graph is an induced subgraph of a g-minimal graph. Recursive constructions of g-minimal graphs are described and bounds for the number of edges in these graphs are given. It is shown that the roots of the generating polynomials of the number of g-convex sets of each size of a g-minimal graphs are bounded, in contrast to their behaviour over all graphs. A set C of vertices of a graph is m-convex if for every pair \({u, v \in C}\) , the vertices of every induced uv path belong to C. A graph is m-minimal if it has no m-convex sets other than the empty set, the singletons, the edges and the entire vertex set. Sharp bounds on the number of edges in these graphs are given and graphs that are m-minimal are shown to be precisely the 2-connected, triangle-free graphs for which no pair of adjacent vertices forms a vertex cut-set.  相似文献   

12.
In this paper, we introduce a new graph parameter called the domination defect of a graph. The domination number γ of a graph G is the minimum number of vertices required to dominate the vertices of G. Due to the minimality of γ, if a set of vertices of G has cardinality less than γ then there are vertices of G that are not dominated by that set. The k-domination defect of G is the minimum number of vertices which are left un-dominated by a subset of γ - k vertices of G. We study different bounds on the k-domination defect of a graph G with respect to the domination number, order, degree sequence, graph homomorphisms and the existence of efficient dominating sets. We also characterize the graphs whose domination defect is 1 and find exact values of the domination defect for some particular classes of graphs.  相似文献   

13.
A graph isk-cyclable if givenk vertices there is a cycle that contains thek vertices. Sallee showed that every finite 3-connected planar graph is 5-cyclable. In this paper, by characterizing the circuit graphs and investigating the structure of LV-graphs, we extend his result to 3-connected infinite locally finite VAP-free plane graphs.  相似文献   

14.
Given an undirected graph with weights on its vertices, the k most vital nodes independent set (k most vital nodes vertex cover) problem consists of determining a set of k vertices whose removal results in the greatest decrease in the maximum weight of independent sets (minimum weight of vertex covers, respectively). We also consider the complementary problems, minimum node blocker independent set (minimum node blocker vertex cover) that consists of removing a subset of vertices of minimum size such that the maximum weight of independent sets (minimum weight of vertex covers, respectively) in the remaining graph is at most a specified value. We show that these problems are NP-hard on bipartite graphs but polynomial-time solvable on unweighted bipartite graphs. Furthermore, these problems are polynomial also on cographs and graphs of bounded treewidth. Results on the non-existence of ptas are presented, too.  相似文献   

15.
A set of vertices S of a graph G is convex if all vertices of every geodesic between two of its vertices are in S. We say that G is k-convex if V(G) can be partitioned into k convex sets. The convex partition number of G is the least k ⩾ 2 for which G is k-convex. In this paper we examine k-convexity of graphs. We show that it is NP-complete to decide if G is k-convex, for any fixed k ⩾ 2. We describe a characterization for k-convex cographs, leading to a polynomial time algorithm to recognize if a cograph is k-convex. Finally, we discuss k-convexity for disconnected graphs.  相似文献   

16.
Given a graph G, we say that a subset D of the vertex set V is a dominating set if it is near all the vertices, in that every vertex outside of D is adjacent to a vertex in D. A domatic k-partition of G is a partition of V into k dominating sets. In this paper, we will consider issues of computability related to domatic partitions of computable graphs. Our investigation will center on answering two types of questions for the case when k = 3. First, if domatic 3-partitions exist in a computable graph, how complicated can they be? Second, a decision problem: given a graph, how difficult is it to decide whether it has a domatic 3-partition? We will completely classify this decision problem for highly computable graphs, locally finite computable graphs, and computable graphs in general. Specifically, we show the decision problems for these kinds of graphs to be ${\Pi^{0}_{1}}$ -, ${\Pi^{0}_{2}}$ -, and ${\Sigma^{1}_{1}}$ -complete, respectively.  相似文献   

17.
It is shown by Rao and Rao that certain geometric properties characterize the line graph of a BIB design with parameters b, v, r, k, 1, provided r - 2k + 1 < 0. If r = k + 1, and k #&62; 2, a characterization of the line graph of a finite affine plane is obtained. If r - 2k + 1 = 0, the only possible value for k is 2 and consequently r = k + 1 resulting in the case of the line graph of a finite affine plane. It is shown here that if r = k + 1 and k = 2, there are exactly seven other non-isomorphic graphs with those properties which are not the line graph of a finite affine plane and these are the only cubic graphs on twelve vertices with no quadrilaterals.  相似文献   

18.
An interval k-graph is the intersection graph of a family of intervals of the real line partitioned into k classes with vertices adjacent if and only if their corresponding intervals intersect and belong to different classes. In this paper we study the cocomparability interval k-graphs; that is, the interval k-graphs whose complements have a transitive orientation and are therefore the incomparability graphs of strict partial orders. For brevity we call these orders interval k-orders. We characterize the kind of interval representations a cocomparability interval k-graph must have, and identify the structure that guarantees an order is an interval k-order. The case k =?2 is peculiar: cocomparability interval 2-graphs (equivalently proper- or unit-interval bigraphs, bipartite permutation graphs, and complements of proper circular-arc graphs to name a few) have been characterized in many ways, but we show that analogous characterizations do not hold if k >?2. We characterize the cocomparability interval 3-graphs via one forbidden subgraph and hence interval 3-orders via one forbidden suborder.  相似文献   

19.
Selçuk Kayacan 《代数通讯》2018,46(4):1492-1505
The intersection graph of a group G is an undirected graph without loops and multiple edges defined as follows: the vertex set is the set of all proper non-trivial subgroups of G, and there is an edge between two distinct vertices H and K if and only if HK≠1 where 1 denotes the trivial subgroup of G. In this paper, we classify finite solvable groups whose intersection graphs are not 2-connected and finite nilpotent groups whose intersection graphs are not 3-connected. Our methods are elementary.  相似文献   

20.
To a set of n points in the plane, one can associate a graph that has less than n2 vertices and has the property that k-cliques in the graph correspond vertex sets of convex k-gons in the point set. We prove an upper bound of 2k-1 on the size of a planar point set for which the graph has chromatic number k, matching the bound conjectured by Szekeres for the clique number. Constructions of Erd?s and Szekeres are shown to yield graphs that have very low chromatic number. The constructions are carried out in the context of pseudoline arrangements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号