首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 955 毫秒
1.
Cross sections for collision induced dissociation of 0.65 to 3.2 keV I+2(2Πg, υ) ions in I+2(2Πg, υ) + N2(X 1Σ+g, υ = 0) interactions have been determined. Reaction cross sections for I+2(2Π32,g, υ) ions in low vibrational levels vary smoothly from 6 to 10 A2 with increasing kinetic energy. Dissociation cross sections for I+2(2Π12,g, υ) ions are larger than those involving ground state ions. Processes involving highly excited metastable states of I+2 are not observed in this investigation.  相似文献   

2.
From measurements of the heats of iodination of CH3Mn(CO)5 and CH3Re(CO)5 at elevated temperatures using the ‘drop’ microcalorimeter method, values were determined for the standard enthalpies of formation at 25° of the crystalline compounds: ΔHof[CH3Mn(CO)5, c] = ?189.0 ± 2 kcal mol?1 (?790.8 ± 8 kJ mol?1), ΔHof[Ch3Re(CO)5,c] = ?198.0 ± kcal mol?1 (?828.4 ± 8 kJ mo?1). In conjunction with available enthalpies of sublimation, and with literature values for the dissociation energies of MnMn and ReRe bonds in Mn2(CO)10 and Re2(CO)10, values are derived for the dissociation energies: D(CH3Mn(CO)5) = 27.9 ± 2.3 or 30.9 ± 2.3 kcal mol?1 and D(CH3Re(CO)5) = 53.2 ± 2.5 kcal mol?1. In general, irrespective of the value accepted for D(MM) in M2(CO)10, the present results require that, D(CH3Mn) = 12D(MnMn) + 18.5 kcal mol?1 and D(CH3Re) = 12D(ReRe) + 30.8 kcal mol?1.  相似文献   

3.
The vibrational distribution of CO produced from the electronic-to-vibrational energy transfer reaction: Na(32P) + CO(X1Σ+, υ=0)→Na(32S) + CO(X1Σ+, υ?8) has been determined by means of infrared resonance absorption measurements employing a cw CO laser. A flash-lamp-pumped dye laser is used to excite the ground state Na to the 32P12 and 32P32 states. The CO molecules formed in the reaction were found to be vibrationally excited up to the limits of available electronic energies carried by the excited Na atoms, and the vibrational population exhibits a maximum at υ=2. The efficiency of E→V energy transfer was determined to be 35%. Our present results were found to be consistent with the impulsive (half-collision) and curve-crossing models.  相似文献   

4.
A pulsed beam of metastable atoms traverses a scattering chamber filled with oxidant gas at low pressures (beam + gas arrangement); the resulting chemiluminescence is spectroscopically resolved as a function of time to yield a time-of-flight (TOF) spectrum for different internal states. From this data, the initial relative translational energy distribution is derived for the reactants that populate the excited internal state observed. Lower bounds are placed on the barium halide (BaX) dissociation energies, using the reactions Ba(3D) + X2 → BaX* + X, where X = Br, I. Arguments are presented to show that these lower bounds represent measurements of the true bond energies: it is concluded that D00(BaBr) = 85.8 ± 2 kcal/mole and D00(BaI) = 72.9 ± 2 kcal/mole. The present work corrects previous determinations of bond energies from single-collision chemiluminescent studies which were in error because of unrecognized metastable contamination in the high-temperature atomic beam.  相似文献   

5.
Seeded supersonic NO beams were used to study the kinetic energy dependence of both the electronic (NO2*) and vibrational (NO23) chemiluminescence of the NO + O3 reaction. In addition the electronic CL is found to be enhanced by raising the NO internal temperature. This is shown to be due to enhanced reactivity of the NO(2Π,32) fine structure component. By difference NO(2Π12) is concluded to yield predominantly groundstate NO23. The excitation function for NO2* formation from NO(2Π32) is of the form σ32(E) = C(E/E0 - 1)n over the 3–6 kcal energy range where n = 2.4 ± 0.15, C = 0.163 Å2 and E0 = 3.2 ± 0.3 kcal/mole. Vibrational IR emission from NO23 has an energy dependence different from electronic NO2* emission, confirming that emitters are formed predominantly in distinct reaction channels rather than via a common precursor (either NO2* or NO23). The short wavelength cutoff of the CL spectra recorded at elevated collision energies E ? 15 kcal/mole corresponds to the total available energy. These and literature results are discussed in the light of general properties of the (generally unknown) ONO3 potential energy surfaces. The formation of electronically excited NO2* rather than energetically preferred O2 (1 Δg) (Gauthier and Snelling) can be rationalized in terms of surface hopping near a known intersection of potential energy surfaces more easily than by vibronic interaction in the asymptotic NO2 product.  相似文献   

6.
Two new Rydberg series in H2S and D2S habe been characterized as three-photon resonances in four-photon ionisation spectrometry. Members of the two series exhibit sufficient rotational structure to permit characterisation of their electronic symmetries as, respectively. A2 and B1. The first Rydberg series is identified with the (one-photon forbidden) excitations npb2 ← 2b1 (1A2X1A1) on the basis of the observed quantum defects. Geometry considerations indicate that second series, of 1B1 states, also arises as a result of electronic promotion from the highest occupied 2b1 orbital. The acceptor (a1) Rydberg orbitals possess substanial s character, but the polarisation dependence of the various 1B1-X1A1 three-photon transition probabilities their hybrid I character, d (and quite possibly p) functions contribute also. The results provide further clear demonstration of the way in which multiphoton excitations, and MPI techniques in particular, can complement conventional one-photon absorption techniques. Members of both series are predissociated. Vibronic predissociation rates are found generally to decline with increasing n and to be slower in D2S than in H2S. The lowest (n = 4) member of the 1A2 series in both isotopic species appears immune from rovibronic predissociation but higher members show evidence of a (Ja2)-dependent rotationally-induced predissociation, the severity of which increases dramatically with n. This observation is explained in terms of electronic-rotational Coriolis coupling to a dissociated 1B2 state is presumed to be responsible for the observed (Jb2)-dependent heterogeneous predissociation of the 1B1 (n = 6) member in H2S. However, the dominant rotationally-induced predissociation mechanism that affects the counterpart in D2S scales with (Ja2). Wherever possible comparisons are drawn with the known spectroscopy and photophysics of the isovalent molecules H2O and D2O.  相似文献   

7.
The reactions Ba + CH3I → BaI + CH3 and Ba + CH2I2 → BaI + CH2I have been investigated by the method of laser-induced fluorescence. Excitation spectra are reported for BaI products formed under single-collision conditions in a “beam-gas” arrangement. The production of BaI for Ba + CH2I2 is found to be a major reaction pathway with a cross section about twice that for Ba + CH3I. The relative vibrational populations show for both reactions bell-shaped distributions peaking close to υ = 21 for Ba + CH3I and υ = 39 for Ba + CH2I2. The corresponding average fraction of the total reaction exoergicity that appears as BaI vibration is fυ = 0.18 for Ba + CH3I and fυ = 0.29 for Ba + CH2I2. In the case of Ba + CH3I, an estimate for the average relative translational energy of the products, obtained from the primitive angular distribution measurements of Lin, Mims and Herm, can be combined with the average vibrational excitation of BaI to provide evidence that the internal excitation of the methyl radical exceeds that of BaI. A model is discussed which postulates an electron jump in the exit valley of the Ba + CH3I reaction to account for this feature of the reaction dynamics.  相似文献   

8.
The C1B1 states of H2O and D2O have been observed by means of three photon absorption (four photon ionisation) spectroscopy. Differences between the experimentally observed 3 + 1 multiphoton ionisation spectrum and that predicted by the appropriate asymmetric-top three-photon line-strength theory are attributed to C state predissociation. Two separate predissociation mechanisms have been identified, one (heterogeneous) relying on a-axis parent molecular rotation to couple the bound B1 state to an unbound state of A1 electronic symmetry, the other (homogeneous) involving a second, dissociative excited electronic state of B1 symmetry. Having established the detailed C state predissociation dynamics, two photon absorption spectra of H2O and D2O (CX) can be predicted accurately: studies of individual quantum-state-selected photofragmentation processes from H2O(C) are proposed.  相似文献   

9.
By exciting Rb2 in a supersonic nozzle beam with a pulsed dye laser in the C 1Πu-X 1Σ+g and the D 1Πu-X 1Σ+g band system, we find evidence tor different predissociation processes The products appear as follows from the C state, Rb* (5 2P32) exclusively, and from the D state Rb*(42D32) predominantly, followcd by Rb*(5 2Pi-52S) cascade radiation In addition, a lower bound of De(Rb2X1Σ+g)? 3939± 10 cm?1 is obtained.  相似文献   

10.
Microwave—optical double resonance experiments have been carried out on the 4o1 band of the A1A2X1A1 system of thioformaldehyde (H2CS). More than 100 microwave and radiofrequency transitions have been observed in the A1A2 excited state. Many of these transitions are magnetically sensitive. Some of the excited state levels are perturbed by triplet levels and others by high vibrational levels of the ground state.  相似文献   

11.
Ab initio calculations suggest that the potential energy surface for the 12A″ state of N2O+ has a secondary minimum corresponding to a strongly bent structure. This structure is computed to lie below the A2Σ + state energetically and therefore may be responsible for the isotopic scrambling observed in this energy region.  相似文献   

12.
Photoelectron spectra of the vinylidene anion (C2H2?) show vibrational structure in X1A1 vinylidene up 12 kcal/ mol above the vibrational ground state. Analysis yields an EA(C2H2X1 A1) of 0.47 ± 0.02 eV, and frequencies for the CC stretch and HCH bend. Absence of the 3B2 state in the photoelectron spectra indicates the 1A1-3B2 splitting in vinylidene is ? 1.7 eV.  相似文献   

13.
The appearance rate of 1* (5p52P12) following laser photolysis of molecular I2 1.2 kT below the dissociation limit o the I2 (B3 Πou+) state has been monitored by time-resolved atomic absorption as a function of I2 pressure. Data were also taken with N2 as an added gas. The results confirm the production of I* from the B state by a collisional process and reveal an additional process by which I* continues to appear for several hundred nanoseconds after the laser pulse even at N2 pressures as high as 750 torr.  相似文献   

14.
The production of atomic iodine in the ground (2Pfrsol|3/2) and electronically excited (2P13) states following laser-induced photodissociation of I2 the region 425–498 nm was monitored directly by resonance spectroscopy. The branching ratio for iodine atom formation. R = [I(2P12)]/[I(2P32)], is above 0.5 in the region 495–498 nm in agreement with the recent observation of laser action on the atomic transition at 1315 nm following photolysis of I2 using a dye laser. The present experiments permitted deconvolution of the I2 continuous absorption spectrum below 498 into contributions from the B3 Πo,u → X 1Σg+ and 1Πtu → X1σg? transitions.  相似文献   

15.
A problem of trap diffusion, that is diffusion of point defects in crystals participating in a solid-phase chemical reaction with motionless impurity ions, is solved. Time dependences of the reaction-front displacement, Xf, and its steepness, (?C?X)f are determined analytically for N0 ? C0 and numerically for all relations of N0 and C0xf2=2N0C0Dt; (acax)f=0.3C032(gD)12>where C0 and N0 are the initial concentration of impurity and the eqilibrium defect concentration, respectively, D is a diffusion coefficient, and g is a chemical reaction constant. Dependence of Xf vs C0 and t is confirmed for oxygen annealing of corundum crystals doped with titanium which, reacting with the point defects, changes its valency. The data are obtained for dependence of displacement Xf upon partial oxygen pressure and thermotreatment temperature as well as upon the sign of the constant electric field applied to the sample. From these data we conclude that the reaction of titanium impurity, changing from the three-valent to the tetravalent state at the activation energy of 80 ± 8.5 kcal/mole is due to anisotropic diffusion of charged aluminum vacancy and holes in the valence band. The diffusion coefficient for that process at 1500°C is estimated to be larger than 10?5 cm2/sec. Using the trap-diffusion features, the concentration of optical centers of the 0.315-μm absorption band in ruby is also estimated.  相似文献   

16.
CW dye laser induced fluorescence emission and thermal emission spectra of YO-molecules in a 1 atm H2O2Ar flame of 2430 K were recorded simultaneously. Narrow band laser excitation was applied to four rotational lines in the (1, 1) Q-branch of the A2Π32X2Σ+ transition and broadband excitation was applied to several separate Q-branches of the A2Π12,32X2Σ+ transitions. From the differences between the fluorescence emission spectra and thermal emission spectra, we conclude that collisional de-excitation of an excited vibronic level takes place by vibrational relaxation, decay to the electronic ground state and by intermultiplet transfer in order of increasing probability.  相似文献   

17.
Absorption transitions to vibrational levels close to the A state dissociation limit of ICI have been examined using a two-photon sequential absorption technique. The discrete rotational structures of I37 Cl bands to within 0.7 cm?1 of the limit have been selectively excited and analysed. A value of 17557.514 ± 0.030 cm?1 has been obtained for the I(2Po32) + Cl(2Po32) dissociation energy De, relative to the minimum of the ICI ground state potential well. The two-photon technique can be used to excite and display separately the high resolution absorption spectra of different isotopic species of a molecule which are contained in a mixture.  相似文献   

18.
Studies are made of the visible chemiluminescence resulting from the reaction of an atomic beam of samarium or europium with O3, N2O, NO2 and F2 under single-collision conditions (~10?4 torr). The spectra obtained for SmO, EuO, SmF, and EuF are considerably more extensive than previously observed. The variation of the chemiluminescent intensity with metal flux and with oxidant flux is investigated, and it's concluded that the reactions are bimolecular. From the short wavelength curoff of the chemiluminescent spectra, the following lower bounds to the ground state dissociation energies are obtained: D00(SmO) > 135.5 +- 0.7 kcal/mole, D00(EuO) > 131.4 ± 0.7 kcal/mole, D00(SmF) > 123.6 ± 2.1 kcal/mole, and D00(EuF) > 129.6 ± 2.1 kcal/mole. Using the Clausius-Clapeyron equation, the latent heats of sublimation are found to be ΔH1052 (Eu) = 42.3 ± 0.7 kcal/mole for europium and ΔH1084(Sm) = 47.9 ± 0.7 kcal/mole for samarium. Total phenomena- logical cross sections are determined for metal atom removal. Relative photon yields per product molecule are calculated from the integrated chemiluminescent spectra and it is found that Sm + F2 → SmF* + F is the brightest reaction. The comparison of the photon yields under single-collision conditions with those at several torr shows that energy transfer collisons play an important role in the mechanism for chemiluminescence at the higher pressures. A simple model is presented which explains the larger photon yields of the Sm reactions compared to the Eu reactions in terms of the greater number of electronic states correlating with the reactants in the case of samarium.  相似文献   

19.
Laser induced fluorescence of C2O is observed following the 266 nm laser photodissociation Of C3O2. Excitation spectra of C2O(Ã3Πi?-~X3Σ? are consistent with previous absorption studies of C2O. A number of new transitions are identified and assigned. Fluorescence spectra have been recorded following single vibrational level laser excitation. Bands are assigned to ground state vibrational progressions. Values of 1967 and 1063 cm?1 are found for υ1″ and υ3″ stretching vibrations in the X?3Σ ? state. A subband structure in the fluorescence spectrum is observed and discussed.  相似文献   

20.
LLi2Mo4o13 crystallizes in the triclinic system with unit-cell dimensions a = 8.578 Å, b = 11.450 Å, c = 8.225 Å, α = 109.24°, β = 96.04°, γ = 95.95° and space group P1, Z = 3. The calculated and measured densities are 4.02 g/cm3 and 4.1 g/cm3 respectively. The structure was solved using three-dimensional Patterson and Fourier techniques. Of the 2468 unique reflections collected by counter methods, 1813 with I ? 3σ(I) were used in the least-squares refinement of the model to a conventional R of 0.031 (ωR = 0.038). LLi2Mo4O13 is a derivative of the V6O13 structure with oxygen ions arranged in a face-centred cubic type array with octahedrally coordinated molybdenum and lithium ions ordered into layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号