共查询到20条相似文献,搜索用时 15 毫秒
1.
Dr. Brian J. Levandowski Nile S. Abularrage Prof. Dr. Ronald T. Raines 《Chemistry (Weinheim an der Bergstrasse, Germany)》2020,26(41):8862-8866
The replacement of carbon with nitrogen can affect the aromaticity of organic rings. Nucleus-independent chemical shift (NICS) calculations at the center of the aromatic π-systems reveal that incorporating nitrogen into 5-membered heteroaromatic dienes has only a small influence on aromaticity. In contrast, each nitrogen incorporated into benzene results in a sequential and substantial loss of aromaticity. The contrasting effects of nitrogen substitution in 5-membered dienes and benzene are reflected in their Diels–Alder reactivities as dienes. 1,2-Diazine experiences a 1011-fold increase in reactivity upon nitrogen substitution at the 4- and 5-positions, whereas a 5-membered heteroaromatic diene, furan, experiences a comparatively incidental 102-fold increase in reactivity upon nitrogen substitution at the 3- and 4-positions. 相似文献
2.
Liliana Mititelu-Tartau Maria Bogdan Daniela Angelica Pricop Beatrice Rozalina Buca Ana-Maria Pauna Lorena Anda Dijmarescu Ana-Maria Pelin Liliana Lacramioara Pavel Gratiela Eliza Popa 《Molecules (Basel, Switzerland)》2021,26(13)
This paper is focused on the in vivo release and biocompatibility evaluation in rats of some novel systems entrapping zinc chloride in lipid vesicles. The particles were prepared by zinc chloride immobilization inside lipid vesicles made using phosphatidylcholine, stabilized with 0.5% chitosan solution, and dialyzed for 10 h to achieve a neutral pH. The submicrometric systems were physico-chemically characterized. White Wistar rats, assigned into four groups of six animals each, were treated orally with a single dose, as follows: Group I (control): deionized water 0.3 mL/100 g body weight; Group II (Zn): 2 mg/kg body weight (kbw) zinc chloride; Group III (LV-Zn): 2 mg/kbw zinc chloride in vesicles; Group IV (LVC-Zn): 2 mg/kbw zinc chloride in vesicles stabilized with chitosan. Haematological, biochemical, and immune parameters were assessed after 24 h and 7 days, and then liver fragments were collected for histopathological examination. The use of zinc submicrometric particles—especially those stabilized with chitosan—showed a delayed zinc release in rats. No substantial changes to blood parameters, plasma biochemical tests, serum complement activity, or peripheral neutrophils phagocytic capacity were noted; moreover, the tested substances did not induce liver architectural disturbances. The obtained systems provided a delayed release of zinc, and showed good biocompatibility in rats. 相似文献
3.
4.
A novel approach to the tricyclic core of the Stemona alkaloids stemofoline and didehydrostemofoline has been discovered that features an intramolecular (3+2) dipolar cycloaddition of an unactivated carbon-carbon double bond with an azomethine ylide; the azomethine ylide was generated by an unprecedented reaction that occurred during a Swern oxidation of an α-(N-cyanomethyl)-β-hydroxy ester. In separate experiments, the efficacy of introducing the requisite oxygen functionality at C(8) and the 1-butenyl side chain at C(3) was established. 相似文献
5.
Sumera Farha Anwer Maaz Waseem Areeba Fatima Nishat Malik Amjad Ali Saadia Zahid 《Molecules (Basel, Switzerland)》2022,27(21)
Glioblastoma multiforme (GBM) is a tumor of glial origin and is the most malignant, aggressive and prevalent type, with the highest mortality rate in adult brain cancer. Surgical resection of the tumor followed by Temozolomide (TMZ) therapy is currently available, but the development of resistance to TMZ is a common limiting factor in effective treatment. The present study investigated the potential interactions of TMZ with several secretory proteins involved in various molecular and cellular processes in GBM. Automated docking studies were performed using AutoDock 4.2, which showed an encouraging binding affinity of TMZ towards all targeted proteins, with the strongest interaction and binding affinity with GDF1 and SLIT1, followed by NPTX1, CREG2 and SERPINI, among the selected proteins. Molecular dynamics (MD) simulations of protein–ligand complexes were performed via CABS-flex V2.0 and the iMOD server to evaluate the root-mean-square fluctuations (RMSFs) and measure protein stability, respectively. The results showed that docked models were more flexible and stable with TMZ, suggesting that it may be able to target putative proteins implicated in gliomagenesis that may impact radioresistance. However, additional in vitro and in vivo investigations can ascertain the potential of the selected proteins to serve as novel targets for TMZ for GBM treatment. 相似文献
6.
7.
Francesco Greco Federica Anastasi Luca Fidia Pardini Marialaura Dilillo Eleonora Vannini Laura Baroncelli Matteo Caleo Liam A. McDonnell 《Molecules (Basel, Switzerland)》2021,26(19)
Glioblastoma Multiforme (GBM) is a brain tumor with a poor prognosis and low survival rates. GBM is diagnosed at an advanced stage, so little information is available on the early stage of the disease and few improvements have been made for earlier diagnosis. Longitudinal murine models are a promising platform for biomarker discovery as they allow access to the early stages of the disease. Nevertheless, their use in proteomics has been limited owing to the low sample amount that can be collected at each longitudinal time point. Here we used optimized microproteomics workflows to investigate longitudinal changes in the protein profile of serum, serum small extracellular vesicles (sEVs), and cerebrospinal fluid (CSF) in a GBM murine model. Baseline, pre-symptomatic, and symptomatic tumor stages were determined using non-invasive motor tests. Forty-four proteins displayed significant differences in signal intensities during GBM progression. Dysregulated proteins are involved in cell motility, cell growth, and angiogenesis. Most of the dysregulated proteins already exhibited a difference from baseline at the pre-symptomatic stage of the disease, suggesting that early effects of GBM might be detectable before symptom onset. 相似文献
8.
Jessica A. Rumfeldt Heikki Takala Alli Liukkonen Janne A. Ihalainen 《Photochemistry and photobiology》2019,95(4):969-979
Red‐light photosensory proteins, phytochromes, link light activation to biological functions by interconverting between two conformational states. For this, they undergo large‐scale secondary and tertiary changes which follow small‐scale Z to E bond photoisomerization of the covalently bound bilin chromophore. The complex network of amino acid interactions in the chromophore‐binding pocket plays a central role in this process. Highly conserved Y263 and H290 have been found to be important for the photoconversion yield, while H260 has been identified as important for bilin protonation and proton transfer steps. Here, we focus on the roles these amino acids are playing in preserving the chemical properties of bilin in the resting Pr state of the photosensory unit of a bacteriophytochrome from Deinococcus radiodurans. By using pH‐dependent UV‐Vis spectroscopy and spectral decomposition modeling, we confirm the importance of H260 for biliverdin protonation. Further, we demonstrate that in the canonical bacteriophytochromes, the pKa value of the phenol group of the Y263 is uncommonly low. This directly influences the protonation of the bilin molecule and likely the functional properties of the protein. Our study expands the understanding of the tight interplay between the nearby amino acids and bilin in the phytochrome family. 相似文献
9.
Being able to bind, select, and transport species is central to a number of fields, including medicine, materials, and environmental science. In particular, recognizing a specific species from one phase and transporting it across, or into another phase, has obvious applications in environ-mental science, for example, removal of unwanted or toxic materials from an aqueous or organic phase. In this paper, we describe an approach that uses a functionalized dendritic polymer to bind and transport a small anionic molecule across an organic phase (and between two aqueous phases). The design was based on encapsulation principles borrowed from nature, where anions are bound and transported by proteins that have specific sites within their globular ordered structures. For the work reported here, a globular dendritic polymer functionalized with an isophthalamide-based receptor was used to replace the protein structure and anion-binding site. Along with control experiments, the binding and transport properties of two functionalized HBPs were assessed using a Pressman U tube experiment. Both HBPs demonstrated an enhanced ability to bind and transport anions (when compared to the anion-binding site used in isolation). Furthermore, optimum binding and transport occurred when the smaller of the two HBPs were used. This supports our previous observations regarding the existence of a dense packed limit for HBPs. 相似文献
10.
脂肪酸诱导的磷脂膜的热力学行为对于认识细胞内复杂的机制有着重要意义,而前人在研究脂肪酸与磷脂膜相互作用时大都在稀溶液中进行;拥挤环境下脂肪酸诱导磷脂膜的相变行为还未见报道。本文以二肉豆蔻酰磷脂酰胆碱(DMPC)构建囊泡模型,采用差示扫描量热法系统地研究了在不同浓度、不同分子量的聚乙二醇(PEG)拥挤环境中不同结构的脂肪酸对DMPC磷脂囊泡相变的影响。研究结果表明,在拥挤环境中,PEG对纯的磷脂囊泡相变的影响与大分子的分子量和浓度相关。对于脂肪酸/磷脂囊泡(FA/DMPC),PEG的存在对囊泡相变产生显著影响。在所考察的分子量和浓度范围内,PEG使FA/DMPC囊泡相变增加。短链饱和脂肪酸、不饱和脂肪酸原本使DPMC囊泡相变降低,但PEG缩小了降低幅度,甚至导致相变增加。进一步的研究表明,在大多数情况下,PEG对FA/DMPC的相变具有协作增强效应,且其影响均与大分子的分子量和浓度相关。另外,随着PEG浓度的升高,磷脂囊泡的协同单位数逐渐降低,表明拥挤环境会影响磷脂双分子层的均一性,使协同发生相变的分子数降低。本文的研究表明,大分子拥挤环境能够对扰动的磷脂双分子层起到一定的修复作用,这一现象在生物膜相关领域不可忽视。 相似文献
11.
A novel series of eight SMS and sPLA2 dual inhibitors containing indole and a-amino cyanide fragments of different length and substitution position was synthesized and evaluated by three different in vitro assays. Biological evaluation showed that all compounds provided inhibitory effects against SMS (about 50% inhibition at 100 μmol/L) and sPLA2 (14-32 μmol/L). All the compounds had the SMS activity better than the positive control compound D609 in SMS2 homogenate, with compounds 5b and fie ideal for liver homogenate and SMS2 high expression cell homogenate, respectively. 相似文献
12.
13.
《Angewandte Chemie (International ed. in English)》2017,56(12):3142-3160
The important role of vesicles in many aspects of cell function is well‐recognized, but only recently have sophisticated imaging techniques begun to reveal their ubiquity in nature. While we further our understanding of the biological properties of vesicles and their physiological functions, increasingly elegant artificial vesicles are being developed for a wide range of technological applications and basic research. Herein, we examine the state of the art of biological and synthetic vesicles and place their biological features in the context of recent synthetic developments, thus providing a unique overview of these complex and rapidly developing fields. The challenges and opportunities associated with future biological and synthetic studies of vesicles are also presented. 相似文献
14.
15.
16.
Understanding molecular determinants of protein mechanical stability is important not only for elucidating how elastomeric proteins are designed and functioning in biological systems but also for designing protein building blocks with defined nanomechanical properties for constructing novel biomaterials. GB1 is a small α/β protein and exhibits significant mechanical stability. It is thought that the shear topology of GB1 plays an important role in determining its mechanical stability. Here, we combine single molecule atomic force microscopy and protein engineering techniques to investigate the effect of side chain reduction and hydrophobic core packing on the mechanical stability of GB1. We engineered seven point mutants and carried out mechanical ?-value analysis of the mechanical unfolding of GB1. We found that three mutations, which are across the surfaces of two subdomains that are to be sheared by the applied stretching force, in the hydrophobic core (F30L, Y45L, and F52L) result in significant decrease in mechanical unfolding force of GB1. The mechanical unfolding force of these mutants drop by 50-90 pN compared with wild-type GB1, which unfolds at around 180 pN at a pulling speed of 400 nm/s. These results indicate that hydrophobic core packing plays an important role in determining the mechanical stability of GB1 and suggest that optimizing hydrophobic interactions across the surfaces that are to be sheared will likely be an efficient method to enhance the mechanical stability of GB1 and GB1 homologues. 相似文献
17.
IntroductionWerecentlyreportedanintramolecularthermalrear rangementbetweenSi—SiandFe—Febondsinthedinu clearironcomplex { (Me2 SiSiMe2 ) [(η5 C5H4 )Fe(CO) ]2 (μ CO) 2 } (Scheme 1) .1 5Thethermalrearrangementwaslaterextendedtogermanium ironandsilicon rutheni umanalogues .6 8Th… 相似文献
18.
用偏光显微镜、DSC和WAXD对新的主链型聚甲亚胺醚系列的液晶行为进行了表征,发现7种聚合物均显示向错和条带织构,其熔点呈奇偶变化规律. 相似文献
19.
Nisa V. Salim Tracey L. Hanley Lynne Waddington Patrick G. Hartley Qipeng Guo 《Macromolecular rapid communications》2012,33(5):401-406
This work reports for the first time a simple and effective approach to trigger a spheres‐to‐ vesicles morphological transition from amphiphilic block copolymer/polyelectrolyte complexes in aqueous solution. Vesicles and large compound vesicles (LCVs) were prepared via complexation of polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO) with poly(acrylic acid) (PAA) in water and directly visualized using cryo‐TEM. The complexation and morphological transitions were driven by the hydrogen bonding between the complementary binding sites on the PAA and PEO blocks of the block copolymer. The findings in this work suggest that complexation between amphiphilic block copolymer and polyelectrolyte is a viable approach to vesicles and LCVs in aqueous media. 相似文献
20.
本研究采用抗原决定簇法,在硅烷化的玻片表面合成制备出对缩胆囊素神经肽具有特异性识别能力的分子印迹膜。优化了印迹膜合成制备条件,并用扫描电镜和红外光谱对其进行表征,通过吸附平衡实验评价印迹膜的吸附容量及选择性。基于此分子印迹膜,研究建立了固相竞争-荧光免疫分析方法,利用荧光倒置显微镜-CCD图像分析系统对人脑脊液中缩胆囊素神经肽进行定量分析。实验结果表明所制备的分子印迹膜具有特异性强和可重复利用的优点,在生物体液中缩胆囊素神经肽分析测定上具有良好的应用价值。 相似文献