首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The antitumor activities of DOX‐loaded alginic acid/poly[2‐(diethylamino)ethyl methacrylate] (ALG‐PDEA) nanoparticles are evaluated both in vitro and in vivo. TEM imaging shows that the ALG‐PDEA NPs have a spherical morphology with a size of about 120 nm. CLSM observations reveal that the negatively charged ALG‐PDEA NPs can be taken up well by cells. In vivo NIR fluorescence imaging shows that the ALG‐PDEA NPs can passively target the tumor area because of the EPR effect in the H22 tumor‐bearing mouse. In vivo antitumor efficacy examinations indicate that DOX‐loaded ALG‐PDEA NPs have significantly superior efficacy in impeding tumor growth compared to free DOX and low toxicity to living mice.

  相似文献   


2.
利用N,N-二甲基甲酰胺同时萃取血样中痕量的锌原卟啉和原卟啉,以三维荧光-交替三线性分解算法和导数恒基体同步荧光法同时分析血样中的锌原卟啉和原卟啉.前者中锌原卟啉和原卟啉分别在0.6~35 μg/L和0.4~27 μg/L范围内呈良好的线性,检出限分别为0.18和 0.12 μg/L;后者中锌原卟啉和原卟啉在0.14~45 μg/L和0.056~28.5 μg/L范围内呈良好的线性,检出限分别为0.12和 0.045 μg/L.实际血样中两种方法的平均回收率分别为(82±9)%和(85±10)%,且两种方法测定20份血样时获得的相关性良好.  相似文献   

3.
Electrochemical analysis of cobalt(III) protoporphyrin IX (CoP), synthesis and characterization of CoP nanoparticles, and signal amplification for biosensor development is presented. CoP was self-assembled into nanoparticles and then released to produce over 1000 electrochemically-detectable molecules for each protein target of interest, in this case monoclonal rabbit antibody. Anodic stripping voltammetry was utilized for quantitative and sensitive detection of CoP which correlated to target protein concentration. The CoP limit of detection was 4 nM and target protein was detected at 100 pM. This combination of nanoparticle and electrochemical signal amplification could allow for sensitive, inexpensive, and portable detection of protein biomarkers.  相似文献   

4.
A three‐layered fibrous scaffold composed of fibers of different diameters in each layer was fabricated in correspondence with the structure of the blood vessels. Effect of solution and electrospinning parameters on morphology and diameters of the fibers were investigated by scanning electron microscopy (SEM), for each layer. The SEM images showed that 18% poly (lactic‐co‐glycolic acid) (PLGA)‐gelatin‐chitosan in 1,1,1,3,3,3‐hexafluoro‐2‐propanol (HFIP)/acid acetic solution resulted in bead‐free fibers for the outer layer. For the middle layer, 18% PLGA‐gelatin in HFIP at 13 kV with 13 cm needle to collector distance was chosen as the optimum condition. SEM imaging demonstrated that by increasing graphene content from 0.5 to 2 wt% in the inner layer (as an electrically conductive/platelet anti‐adhesion material), the fiber diameter decreased from 324.01 ± 58.90 to 288.59 ± 70.77 nm. The effect of gelatin crosslinking on the microstructure of the fibers was also examined. Shrinkage ratio decreased from 57 to below 21% upon crosslinking of the three‐layered scaffold in exposure to vapor of 50% glutaraldehyde solution for 2 hours. Mechanical test showed that tensile strength of the crosslinked three‐layer scaffold in the longitudinal direction was 2.90 MPa which is comparable to that of the vein and artery. The MTT [3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide] assay displayed cell viability of above 96% for the PLGA‐gelatin containing 2 wt% graphene. SEM analysis revealed that the addition of graphene to PLGA‐gelatin (up to 2%) causes a remarkable improvement in cell adhesion.  相似文献   

5.
Abstract— Photodynamic efficiency of protoporphyrin IX (PP) accumulated in HeLa cells by the incubation of PP with HeLa cells was compared with that of accumulated PP formed from 5-aminolevulinic acid (ALA) as a precursor. The ALA-induced PP was photodynamically more efficient than exogenous PP. The difference is caused by monomelic PP concentration and PP localization site in HeLa cells. Exogenous PP was accumulated mainly in plasma membrane, and the membrane was strongly damaged by irradiation. The ALA-induced PP was selectively accumulated in mitochondria and inactivated the mitochondrial function by irradiation.  相似文献   

6.
The ever‐growing interest for finding efficient and reliable methods for treatment of diseases has set a precedent for the design and synthesis of new functional hybrid materials, namely porous nanoparticles, for controlled drug delivery. Mesoporous silica nanoparticles (MSNPs) represent one of the most promising nanocarriers for drug delivery as they possess interesting chemical and physical properties, thermal and mechanical stabilities, and are biocompatibile. In particular, their easily functionalizable surface allows a large number of property modifications further improving their efficiency in this field. This Concept article deals with the advances on the novel methods of functionalizing MSNPs, inside or outside the pores, as well as within the walls, to produce efficient and smart drug carriers for therapy.  相似文献   

7.
Significant efforts have been invested in finding a delivery system that can encapsulate and deliver therapeutics. Core–shell polymer‐lipid hybrid nanoparticles have been studied as a promising platform because of their mechanical stability, narrow size distribution, biocompatibility, and ability to co‐deliver diverse drugs. Here, novel core–shell nanoparticles based on a poly(lactic‐co‐glycolic acid) (PLGA) core and multilamellar lipid shell are designed, where the lipid bilayers are crosslinked between the two adjacent bilayers (PLGA‐ICMVs). The cross‐platform performance of the nanoparticles to other polymer‐lipid hybrid platforms is examined, including physicochemical characteristics, ability to encapsulate a variety of therapeutics, biocompatibility, and functionality as a vaccine delivery platform. Differential abilities of nanoparticle systems to encapsulate distinct pharmaceutics are observed, which suggest careful consideration of the platform chosen depending on the therapeutic agent and desired function. The novel PLGA‐ICMV platform herein demonstrates great potential in stably encapsulating water‐soluble agents and therefore is an attractive platform for therapeutic delivery.  相似文献   

8.
Phospholipid‐detergent conjugates are proposed as fusogenic carriers for gene delivery. Eleven compounds are prepared and their properties are investigated. The ability of the conjugates to promote fusion with a negatively charged model membrane is determined. Their DNA delivery efficiency and cytotoxicity are assessed in vitro. Lipoplexes are administered in the mouse lung, and transgene expression Indeterminate inflammatory activity are measured. The results show that conjugation of 1,2‐dioleoyl‐sn‐glycero‐3‐phosphocholine (DOPC) with C12E4 produces a carrier that can efficiently deliver DNA to cells, with negligible ­associated toxicity. Fusogenicity of the conjugates shows good correlation with in vitro transfection efficiency and crucially depends on the length of the polyether moiety of the detergent. Finally, DOPC‐C12E4 reveals highly potent for in vivo DNA delivery and favorably compares to GL67A, the current golden standard for gene delivery to the airway, opening the way for further promising developments.

  相似文献   


9.
Aminolevulinic acid (ALA)‐mediated protoporphyrin IX (PpIX) production is being explored for tumor fluorescence imaging and photodynamic therapy (PDT). As a prodrug, ALA is converted in heme biosynthesis pathway to PpIX with fluorescent and photosensitizing properties. To better understand the role of heme biosynthesis enzymes in ALA‐mediated PpIX fluorescence and PDT efficacy, we used lentiviral shRNA to silence the expression of porphobilinogen synthase (PBGS), porphobilinogen deaminase (PBGD) and ferrochelatase (FECH) in SkBr3 human breast cancer cells. PBGS and PBGD are the first two cytosolic enzymes involved in PpIX biosynthesis, and FECH is the enzyme responsible for converting PpIX to heme. PpIX fluorescence was examined by flow cytometry and confocal fluorescence microscopy. Cytotoxicity was assessed after ALA‐mediated PDT. Silencing PBGS or PBGD significantly reduced ALA‐stimulated PpIX fluorescence, whereas silencing FECH elevated basal and ALA‐stimulated PpIX fluorescence. However, compared with vector control cells, the ratio of ALA‐stimulated fluorescence to basal fluorescence without ALA was significantly reduced in all knockdown cell lines. PBGS or PBGD knockdown cells exhibited significant resistance to ALA‐PDT, while increased sensitivity to ALA‐PDT was found in FECH knockdown cells. These results demonstrate the importance of PBGS, PBGD and FECH in ALA‐mediated PpIX fluorescence and PDT efficacy.  相似文献   

10.
Effective and low toxicity delivery of siRNA is of great importance for clinical gene therapy. Herein, self‐assembled DNA nanoparticles (NPs) based on rolling circle amplification (RCA) with a small interfering RNA (siRNA) payload were successfully developed as a facile and efficient siRNA delivery strategy. This intracellular gene silencing strategy exhibits various advantages including low toxicity, high efficiency, and good stability. The synthesized DNA NPs serve as siRNA carriers, protecting the siRNA against nuclease degradation. We demonstrate that the obtained self‐assembled siRNA/NP/PEI system can successfully deliver enhanced green fluorescent protein (EGFP)‐siRNA into HeLa cells, realizing the same EGFP knockdown efficiency with less toxicity as that of commercial Lipofectamine 2000.  相似文献   

11.
A pH‐sensitive polymer was synthesized by introducing the N‐Boc‐histidine to the ends of a PLGA‐PEG‐PLGA block copolymer. The synthesized polymer was confirmed to be biodegradable and biocompatible, well dissolved in water and forming micelles above the CMC. DOX was employed as a model anticancer drug. In vitro drug release from micelles of N‐Boc‐histidine‐capped PLGA‐PEG‐PLGA exhibited significant difference between pH = 6.2 and pH = 7.4, whereas DOX release from micelles composed of un‐capped virgin polymers was not significantly sensitive to medium pH. Uptake of DOX from micelles of the new polymer into MDA‐MB‐435 solid tumor cells was also observed, and pH sensitivity was confirmed. Hence, the N‐Boc‐histidine capped PLGA‐PEG‐PLGA might be a promising material for tumor targeting.

  相似文献   


12.
13.
Aminolevulinic acid (ALA) is a prodrug that is metabolized in the heme biosynthesis pathway to produce protoporphyrin IX (PpIX) for tumor fluorescence detection and photodynamic therapy (PDT). The iron chelator deferoxamine (DFO) has been widely used to enhance PpIX accumulation by inhibiting the iron‐dependent bioconversion of PpIX to heme, a reaction catalyzed by ferrochelatase (FECH). Tumor response to DFO treatment is known to be highly variable, and some tumors even show no response. Given the fact that tumors often exhibit reduced FECH expression/enzymatic activity, we examined how reducing FECH level affected the DFO enhancement effect. Our results showed that reducing FECH level by silencing FECH in SkBr3 breast cancer cells completely abrogated the enhancement effect of DFO. Although DFO enhanced ALA‐PpIX fluorescence and PDT response in SkBr3 vector control cells, it caused a similar increase in MCF10A breast epithelial cells, resulting in no net gain in the selectivity toward tumor cells. We also found that DFO treatment induced less increase in ALA‐PpIX fluorescence in tumor cells with lower FECH activity (MDA‐MB‐231, Hs 578T) than in tumor cells with higher FECH activity (MDA‐MB‐453). Our study demonstrates that FECH activity is an important determinant of tumor response to DFO treatment.  相似文献   

14.
Small (2–28 nm) NaREF4 (rare earth (RE)=Nd–Lu, Y) nanoparticles (NPs) were prepared by an oil/water two‐phase approach. Meanwhile, hydrophilic NPs can be obtained through a successful phase‐transition process by introducing the amphiphilic surfactant sodium dodecylsulfate (SDS) into the same reaction system. Hollow‐structured NaREF4 (RE=Y, Yb, Lu) NPs can be fabricated in situ by electron‐beam lithography on solid NPs. The MTT assay indicates that these hydrophilic NPs with hollow structures exhibit good biocompatibility. The as‐prepared hollow‐structured NPs can be used as anti‐cancer drug carriers for drug storage/release investigations. Doxorubicin hydrochloride (DOX) was taken as model drug. The release of DOX from hollow α‐NaLuF4:20 % Yb3+, 2 % Er3+ exhibits a pH‐sensitive release patterns. Confocal microscopy observations indicate that the NPs can be taken up by HeLa cells and show obvious anti‐cancer efficacy. Furthermore, α‐NaLuF4:20 % Yb3+, 2 % Er3+ NPs show bright‐red emission under IR excitation, making both the excitation and emission light fall within the “optical window” of biological tissues. The application of α‐NaLuF4:20 % Yb3+, 2 % Er3+ in the luminescence imaging of cells was also investigated, which shows a bright‐red emission without background noise.  相似文献   

15.
16.
17.
18.
19.
In order to limit the side effects associated with antitumor drugs such as doxorubicin, nanosized drug‐delivery systems capable of selectively delivering and releasing the drug in the diseased tissue are required. We describe nanoparticles (NPs), self‐assembled from a reduction responsive amphiphilic peptide, capable of entrapping high amounts of a redox active anticancer drug candidate and releasing it in presence of a reducing agent. This system shows a high entrapment efficiency with up to 15 mg drug per gram of peptide (5.8 mol‐%). Treatment of the NPs with reducing agent results in the disassembly of the NPs and release of the drug molecules. A reduction in cell viability is observed at drug concentrations above 250 nm in HEK293T and HeLa cell lines. This drug delivery system has potential for targeting tumor sites via the EPR effect while taking advantage of the increased reduction potential in tumor microenvironment.  相似文献   

20.
A series of nanoparticles is prepared via layer‐by‐layer assembly of oppositely charged, synthetic biocompatible polyamidoamine polymers as potential carriers. Particle size, surface charge and internal chain mobility are quantified as a function of the polymer type and number of layers. The effect of addition of surfactant is examined to simulate the effects of nanoparticle dissolution. The cyctotoxicity of these particles (in epithelia and murine cell lines) are orders of magnitude lower than polyethyleneimine controls. Stable nanoparticles may be prepared from mixtures of strongly, oppositely charged polymers, but less successfully from weakly charged polymers, and, given their acceptable toxicity characteristics, such modularly designed constructs show promise for drug and gene delivery.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号